OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 26 — Dec. 22, 2008
  • pp: 21930–21935

100 GHz passively mode-locked Er:Yb:glass laser at 1.5 µm with 1.6-ps pulses

Andreas E. H. Oehler, Thomas Südmeyer, Kurt J. Weingarten, and Ursula Keller  »View Author Affiliations

Optics Express, Vol. 16, Issue 26, pp. 21930-21935 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (839 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a compact diode-pumped fundamentally modelocked Er:Yb:glass laser with a record high repetition rate of 101 GHz, generating 35 mW average power in 1.6-ps pulses in the 1.5-µm telecom window. This performance makes the laser an attractive pulse generator to be used in advanced high-speed return-to-zero (RZ) telecom systems.

© 2008 Optical Society of America

OCIS Codes
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.4050) Lasers and laser optics : Mode-locked lasers
(320.7090) Ultrafast optics : Ultrafast lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: November 14, 2008
Revised Manuscript: December 16, 2008
Manuscript Accepted: December 16, 2008
Published: December 17, 2008

Andreas E. Oehler, Thomas Südmeyer, Kurt J. Weingarten, and Ursula Keller, "100 GHz passively mode-locked Er:Yb:glass laser at 1.5 μm with 1.6-ps pulses," Opt. Express 16, 21930-21935 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Yoshida, N. Shimizu, and M. Nakazawa, "A 40-GHz 0.9-ps regeneratively mode-locked fiber laser with a tuning range of 1530-1560 nm," IEEE Photon. Technol. Lett. 11, 1587-1589 (1999). [CrossRef]
  2. K. Sato, "Semiconductor light sources for 40-Gb/s transmission systems," IEEE J. Lightwave Technol. 20, 2035-2043 (2002). [CrossRef]
  3. L. Krainer, R. Paschotta, G. J. Spühler, I. Klimov, C. Y. Teisset, K. J. Weingarten, and U. Keller, "Tunable picosecond pulse-generating laser with a repetition rate exceeding 10 GHz," Electron. Lett. 38, 225-227 (2002). [CrossRef]
  4. U. Keller and A. C. Tropper, "Passively modelocked surface-emitting semiconductor lasers," Phys. Rep. 429, 67-120 (2006). [CrossRef]
  5. H. Lindberg, M. Sadeghi, M. Westlund, S. Wang, A. Larsson, M. Strassner, and S. Marcinkevicius, "Mode locking a 1550 nm semiconductor disk laser by using a GaInNAs saturable absorber," Opt. Lett. 30, 2793-2795 (2005). [CrossRef] [PubMed]
  6. D. Lorenser, D. J. H. C. Maas, H. J. Unold, A.-R. Bellancourt, B. Rudin, E. Gini, D. Ebling, and U. Keller, "50-GHz passively mode-locked surface-emitting semiconductor laser with 100 mW average output power," IEEE J. Quantum Electron. 42, 838-847 (2006). [CrossRef]
  7. A. E. H. Oehler, S. C. Zeller, K. J. Weingarten, and U. Keller, "Broad multiwavelength source with 50 GHz channel spacing for wavelength division multiplexing applications in the telecom C band," Opt. Lett. 33, 2158-2160 (2008). [CrossRef] [PubMed]
  8. A. Schlatter, B. Rudin, S. C. Zeller, R. Paschotta, G. J. Spühler, L. Krainer, N. Haverkamp, H. R. Telle, and U. Keller, "Nearly quantum-noise-limited timing jitter from miniature Er:Yb:glass lasers," Opt. Lett. 30, 1536-1538 (2005). [CrossRef] [PubMed]
  9. L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. J. Weingarten, and U. Keller, "Compact Nd:YVO4 lasers with pulse repetition rates up to 160 GHz," IEEE J. Quantum Electron. 38, 1331-1338 (2002). [CrossRef]
  10. C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, "Q-switching stability limits of continuous-wave passive mode locking," J. Opt. Soc. Am. B 16, 46-56 (1999). [CrossRef]
  11. S. C. Zeller, T. Südmeyer, K. J. Weingarten, and U. Keller, "Passively modelocked 77 GHz Er:Yb:glass laser," Electron. Lett. 43, 32-33 (2007). [CrossRef]
  12. A. E. H. Oehler, S. C. Zeller, T. Südmeyer, U. Keller, and K. J. Weingarten, "Moving towards 100 GHz from a passively mode-locked Er:Yb:glass laser at 1.5 µm," in Conference on Lasers and Electro-Optics (Europe), (IEEE, 2007), talk CI6-1-THU.
  13. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, "Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers," IEEE J. Sel. Top. Quantum Electron. 2, 435-453 (1996). [CrossRef]
  14. U. Keller, "Recent developments in compact ultrafast lasers," Nature 424, 831-838 (2003). [CrossRef] [PubMed]
  15. G. J. Spühler, K. J. Weingarten, R. Grange, L. Krainer, M. Haiml, V. Liverini, M. Golling, S. Schon, and U. Keller, "Semiconductor saturable absorber mirror structures with low saturation fluence," Appl. Phys. B 81, 27-32 (2005). [CrossRef]
  16. J. Schröder, S. Coen, F. Vanholsbeek, and T. Sylvestre, "Passively mode-locked Raman fiber laser with 100 GHz repetition rate," Opt. Lett. 31, 3489-3491 (2006). [CrossRef] [PubMed]
  17. K. Sato, "100 GHz optical pulse generation using Fabry-Perot laser under continous wave operation," Electron. Lett. 37, 763-764 (2001). [CrossRef]
  18. U. Troppenz, J. Kreissl, W. Rehbein, C. Bornholdt, T. Gaertner, M. Radziunas, A. Glitzky, U. Bandelow, and M. Wolfrum, "40 GBit/s Directly Modulated InGaAsP Passive Feedback DFB Laser," in 32nd European Conference on Optical Communications (ECOC), (Cannes, 2006).
  19. D. Kopf, G. Zhang, R. Fluck, M. Moser, and U. Keller, "All-in-one dispersion-compensating saturable absorber mirror for compact femtosecond laser sources," Opt. Lett. 21, 486-488 (1996). [CrossRef] [PubMed]
  20. J. Inoue, T. Isu, K. Akahane, N. Yamamoto, and M. Tsuchyida, "Characterization of highly stacked InAs quantum dot layers on InP substrate for a planar saturable absorber at 1.5 µm band," Phys. Stat. Solidi 3, 520-523 (2006). [CrossRef]
  21. D. J. H. C. Maas, A. R. Bellancourt, M. Hoffmann, B. Rudin, Y. Barbarin, M. Golling, T. Südmeyer, and U. Keller, "Growth parameter optimizationfor fast quantum dot SESAMs," Opt. Express 16, 18646-18656 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited