OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 26 — Dec. 22, 2008
  • pp: 22003–22028

Optical resonances on sub-wavelength silver lamellar gratings

M. R. Gadsdon, I. R. Hooper, and J. R. Sambles  »View Author Affiliations


Optics Express, Vol. 16, Issue 26, pp. 22003-22028 (2008)
http://dx.doi.org/10.1364/OE.16.022003


View Full Text Article

Enhanced HTML    Acrobat PDF (34805 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The optical response of sub-wavelength silver lamellar gratings has been theoretically investigated. Two distinct types of resonance have been predicted for incident radiation with E-field perpendicular to the long axis of the wires. The first resonance has been identified as a cavity mode resonance that is associated with transmission enhancement. The second resonance has been identified as an entirely new horizontal plasmon resonance on the incident (and transmission) surfaces of the wires of the grating. Normal surface plasmon modes are investigated on discontinuous gratings, and their relation to those found on continuous gratings is highlighted by focusing on the perturbation effect of the discontinuities. It is shown that the new horizontal plasmon mode is in no way related to the well known diffractively coupled surface plasmon, and is shown to have a particle plasmon-like nature. It is therefore termed a horizontal particle plasmon, and may be either an uncoupled horizontal particle plasmon resonance (a 1-dimensional particle plasmon) or a coupled horizontal particle plasmon resonance (a 2-dimensional particle plasmon) depending on the height of the grating. It is shown that this resonance may result in a reflection efficiency that is very high, even when the grating would be optically thin if it were a homogeneous film, therefore, it behaves as an inverse wire grid polariser as it reflects more TM than TE incident radiation.

© 2008 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(050.6624) Diffraction and gratings : Subwavelength structures
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Diffraction and Gratings

History
Original Manuscript: September 23, 2008
Revised Manuscript: November 20, 2008
Manuscript Accepted: November 23, 2008
Published: December 19, 2008

Citation
M. R. Gadsdon, I. R. Hooper, and J. R. Sambles, "Optical resonances on sub-wavelength silver lamellar gratings," Opt. Express 16, 22003-22028 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-26-22003


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. W. Wood, "On the remarkable case of uneven distribution of light in a diffraction grating spectrum," Proc. R. Soc. London A 18, 269-275 (1902).
  2. U. Fano, "The Theory of Anomalous Diffraction Gratings and of Quasi-Stationary Waves on Metallic Surfaces (Sommerfelds Waves)," J. Opt. Soc. Am. 31, 213-222 (1941). [CrossRef]
  3. H. Raether, Surface Plasmons on smooth and rough surfaces and on gratings (Springer-Verlag, Berlin, 1988).
  4. Q. Cao and P. Lalanne, "Negative Role of Surface Plasmons in the Transmission of Metallic Gratings with Very Narrow Slits," Phys. Rev. Lett. 88, 057403 (2002). [CrossRef] [PubMed]
  5. A. Barbara, E. Bustarret, T. L’opez-Rios, P. Qu’emerais, and T. Fournier, "Electromagnetic resonances of subwavelength rectangular metallic gratings," Eur. Phys. J. D 23, 143-154 (2003). [CrossRef]
  6. D. Crouse and P. Keshavareddy, "Role of optical and surface plasmon modes in enhanced transmission and applications," Opt. Express. 13, 7760-7771 (2005). [CrossRef] [PubMed]
  7. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, "Transmission Resonances on Metallic Gratings with Very Narrow Slits," Phys. Rev. Lett. 83, 2845-2848 (1999). [CrossRef]
  8. S. Collin, F. Pardo, R. Teissier, and J. Pelouard, "Horizontal and vertical surface resonances in transmission metallic gratings," J. Opt. A: Pure Appl. Opt. 13, S154-S160 (2002). [CrossRef]
  9. H. Lochbihler, "Surface polaritons on metallic wire gratings studied via power losses," Phys. Rev. B 53, 10289- 10295 (1996). [CrossRef]
  10. A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Gratingless enhanced microwave transmission through a subwavelength aperture in a thick metal plate," Appl. Phys. Lett. 81, 4661-4663 (2002). [CrossRef]
  11. J. R. Suckling, A. P. Hibbins, M. J. Lockyear, T. W. Preist, J. R. Sambles, and C. R. Lawrence, "Finite Conductance Governs the Resonance Transmission of Thin Metal Slits at Microwave Frequencies," Phys. Rev. Lett. 92, 147401 (2004). [CrossRef] [PubMed]
  12. I. R. Hooper and J. R. Sambles, "Dispersion of surface plasmon polaritons on short-pitch metal gratings," Phys. Rev. B 65, 165432 (2002). [CrossRef]
  13. G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, "Optical properties of Ag and Au nanowire gratings," J. Appl. Phys. 90, 3825-3830 (2001). [CrossRef]
  14. J. J. Burke, G. I. Stegeman, and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B 33, 5186-5201 (1986). [CrossRef]
  15. E. N. Economou, "Surface Plasmons in Thin Films," Phys. Rev. 182, 539-554 (1969). [CrossRef]
  16. J. P. Kottmann and O. J. F. Martin, "Plasmon resonant coupling in metallic nanowires," Opt. Express. 8, 655-663 (2001). [CrossRef] [PubMed]
  17. J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, "Plasmon resonances of silver nanowires with a nonregular cross section," Phys. Rev. B 64, 235402 (2001). [CrossRef]
  18. J. P. Kottmann and O. J. F. Martin, "Influence of the cross section and the permittivity on the plasmon-resonance spectrum of silver nanowires," Appl. Phys. B 73, 299-304 (2001). [CrossRef]
  19. M. Moskovits, "Surface-enhanced spectroscopy," Rev. Mod. Phys. 57, 783-826 (1985). [CrossRef]
  20. C. Y. Chen and E. Burstein, "Giant Raman Scattering by Molecules at Metal-Island Films," Phys. Rev. Lett. 45, 1287-1291 (1980). [CrossRef]
  21. M. G. Moharam and T. K. Gaylord, "Rigorous coupled-wave analysis of metallic surface-relief gratings," J. Opt. Soc. Am. A 3, 1780-1787 (1986). [CrossRef]
  22. L. Li, "Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings," J. Opt. Soc. Am. A 13, 1024-1035 (1996). [CrossRef]
  23. D. Nash and J. R. Sambles, "Surface plasmon - polariton study of the optical dielectric function of silver," J. Mod. Opt. 43, 81-91 (1996).
  24. M. Honkanen, V. Kettunen,M. Kuittinen, J. Lautanen, J. Turunen, B. Schnabel, and F. Wyrowski, "Inverse metalstripe polarizers," Appl. Phys. B 68, 81-85 (1999). [CrossRef]
  25. J. A. StrattonElectromagnetic Theory, (John Wiley and Sons Inc, New Jersey, 2007).
  26. R. F. Harrington and D. T. Auckland, "Electromagnetic Transmission Through Narrow Slots in Thick Conducting Screens," IEEE Trans. Antennas Propag. AP-28, 616-622 (1980). [CrossRef]
  27. Y. Takakura, "Optical Resonance in a Narrow Slit in a Thick Metallic Screen," Phys. Rev. Lett. 86, 5601-5603 (2001). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited