OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 26 — Dec. 22, 2008
  • pp: 22039–22047

Patterned two-photon illumination by spatiotemporal shaping of ultrashort pulses

Eirini Papagiakoumou, Vincent de Sars, Dan Oron, and Valentina Emiliani  »View Author Affiliations

Optics Express, Vol. 16, Issue 26, pp. 22039-22047 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (983 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Multiphoton excitation by temporally focused pulses can be combined with spatial Fourier-transform pulse shaping techniques to enhance spatial control of the excitation volume. Here we propose and demonstrate an optical system for the generation of such spatiotemporally engineered light pulses using a combination of spatial control by a two-dimensional reconfigurable light modulator, with a dispersive optical setup for temporal focusing. We show that although the properties of a holographic beam significantly differ from those of plane-wave illumination used in previous temporal focusing realizations, this leads only to a slightly reduced axial resolution. We show that the system can provide scanningless, arbitrarily shaped, depth resolved excitation patterns that offer new perspectives for multiphoton photoactivation and optical lithography applications.

© 2008 Optical Society of America

OCIS Codes
(230.6120) Optical devices : Spatial light modulators
(320.5540) Ultrafast optics : Pulse shaping
(090.1995) Holography : Digital holography
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:

Original Manuscript: October 3, 2008
Revised Manuscript: December 1, 2008
Manuscript Accepted: December 14, 2008
Published: December 19, 2008

Eirini Papagiakoumou, Vincent de Sars, Dan Oron, and Valentina Emiliani, "Patterned two-photon illumination by spatiotemporal shaping of ultrashort pulses," Opt. Express 16, 22039-22047 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Gorostiza and E. Y. Isacoff, "Optical switches for remote and noninvasive control of cell signaling," Science 322, 395-399 (2008). [CrossRef] [PubMed]
  2. C. M. Tang, "Photolysis of caged neurotransmitters: theory and procedures for light delivery," Curr. Protoc. Neurosci. (2006). [CrossRef]
  3. F. Zhang, L. P. Wang, E. S. Boyden, and K. Deisseroth, "Channelrhodopsin-2 and optical control of excitable cells," Nat. Meth. 3, 785-792 (2006). [CrossRef]
  4. S. Szobota, P. Gorostiza, F. Del Bene, C. Wyart, D. L. Fortin, K. D. Kolstad, O. Tulyathan, M. Volgraf, R. Numano, H. L. Aaron, E. K. Scott, R. H. Kramer, J. Flannery, H. Baier, D. Trauner, and E. Y. Isacoff, "Remote control of neuronal activity with a light-gated glutamate receptor," Neuron 54, 535-545 (2007). [CrossRef] [PubMed]
  5. A. A. Bagal, J. P. Kao, C. M. Tang, and S. M. Thompson, "Long-term potentiation of exogenous glutamate responses at single dendritic spines," Proc. Natl. Acad. Sci. USA 102, 14434-14439 (2005). [CrossRef] [PubMed]
  6. D. A. DiGregorio, J. S. Rothman, T. A. Nielsen, and R. A. Silver, "Desensitization properties of AMPA receptors at the cerebellar mossy fiber granule cell synapse," J. Neurosci. 27, 8344-8357 (2007). [CrossRef] [PubMed]
  7. G. M. Shepherd and K. Svoboda, "Laminar and columnar organization of ascending excitatory projections to layer 2/3 pyramidal neurons in rat barrel cortex," J. Neurosci. 25, 5670-5679 (2005). [CrossRef] [PubMed]
  8. M. Canepari, G. Papageorgiou, J. E. Corrie, C. Watkins, and D. Ogden, "The conductance underlying the parallel fibre slow EPSP in rat cerebellar Purkinje neurones studied with photolytic release of L-glutamate," J. Physiol. 533, 765-772 (2001). [CrossRef] [PubMed]
  9. L. J. Horneck, "128 X 128 Deformable Mirror Device," IEEE Trans. Electron Devices 30, 539 (1983).
  10. S. Wang, S. Szobota, Y. Wang, M. Volgraf, Z. Liu, C. Sun, D. Trauner, E. Y. Isacoff, and X. Zhang, "All optical interface for parallel, remote, and spatiotemporal control of neuronal activity," Nano Lett. 7, 3859-3863 (2007). [CrossRef] [PubMed]
  11. N. Farah, I. Reutsky, and S. Shoham, "Patterned optical activation of retinal ganglion cells," Conf. Proc. IEEE Eng. Med. Biol. Soc. 2007, 6369-6371 (2007).
  12. S. Shoham, D. H. O'Connor, D. V. Sarkisov, and S. S. Wang, "Rapid neurotransmitter uncaging in spatially defined patterns," Nat. Meth. 2, 837-843 (2005). [CrossRef]
  13. B. Judkewitz, A. Roth, and M. Hausser, "Dendritic enlightenment: using patterned two-photon uncaging to reveal the secrets of the brain's smallest dendrites," Neuron 50, 180-183 (2006). [CrossRef] [PubMed]
  14. C. Lutz, T. S. Otis, V. DeSars, S. Charpak, D. A. DiGregorio, and V. Emiliani, "Holographic photolysis of caged neurotransmitters," Nat Meth 5, 821-827 (2008). [CrossRef]
  15. D. L. Pettit, S. S. Wang, K. R. Gee, and G. J. Augustine, "Chemical two-photon uncaging: a novel approach to mapping glutamate receptors," Neuron 19, 465-471 (1997). [CrossRef] [PubMed]
  16. E. B. Brown, J. B. Shear, S. R. Adams, R. Y. Tsien, and W. W. Webb, "Photolysis of caged calcium in femtoliter volumes using two-photon excitation," Biophys J 76, 489-499 (1999). [CrossRef] [PubMed]
  17. M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, "Two-photon microscopy in brain tissue: parameters influencing the imaging depth," J. Neurosci. Methods 111, 29-37 (2001). [CrossRef] [PubMed]
  18. M. Matsuzaki, G. C. Ellis-Davies, T. Nemoto, Y. Miyashita, M. Iino, and H. Kasai, "Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons," Nat. Neurosci. 4, 1086-1092 (2001). [CrossRef] [PubMed]
  19. A. G. Carter and B. L. Sabatini, "State-dependent calcium signaling in dendritic spines of striatal medium spiny neurons," Neuron 44, 483-493 (2004). [CrossRef] [PubMed]
  20. S. Gasparini and J. C. Magee, "State-dependent dendritic computation in hippocampal CA1 pyramidal neurons," J. Neurosci. 26, 2088-2100 (2006). [CrossRef] [PubMed]
  21. C. D. Harvey, R. Yasuda, H. Zhong, and K. Svoboda, "The spread of Ras activity triggered by activation of a single dendritic spine," Science 321, 136-140 (2008). [CrossRef] [PubMed]
  22. S. K. Mohanty, R. K. Reinscheid, X. Liu, N. Okamura, T. B. Krasieva, and M. W. Berns, "In-depth activation of ChR2 sensitized excitable cells with high spatial resolution using two-photon excitation with near-IR laser microbeam," Biophys. J. 95, 3916-3926 (2008). [CrossRef] [PubMed]
  23. M. Matsuzaki, G. C. Ellis-Davies, and H. Kasai, "Three-dimensional mapping of unitary synaptic connections by two-photon macro photolysis of caged glutamate," J Neurophysiol. 99, 1535-1544 (2008). [CrossRef] [PubMed]
  24. D. Oron, E. Tal, and Y. Silberberg, "Scanningless depth-resolved microscopy," Opt. Express 13, 1468-1476 (2005). [CrossRef] [PubMed]
  25. E. Tal, D. Oron, and Y. Silberberg, "Improved depth resolution in video-rate line-scanning multiphoton microscopy using temporal focusing," Opt. Lett. 30, 1686-1688 (2005). [CrossRef] [PubMed]
  26. D. Oron and Y. Silberberg, "Harmonic generation with temporally focused ultrashort pulses," J. Opt. Soc. Am. B 22, 2660-2663 (2005). [CrossRef]
  27. M. E. Durst, G. Zhu, and C. Xu, "Simultaneous spatial and temporal focusing in nonlinear microscopy," Opt. Commun. 281, 1796-1805 (2008). [CrossRef] [PubMed]
  28. E. Tal and Y. Silberberg, "Transformation from an ultrashort pulse to a spatiotemporal speckle by a thin scattering surface," Opt. Lett. 31, 3529-3531 (2006). [CrossRef] [PubMed]
  29. Q1. R. W. Gerchberg and W. O. Saxton, "A pratical algorithm for the determination of the phase from image and diffraction pictures," Optik 35, 237-246 (1972).
  30. F. Wyrowski and O. Bryngdahl, "Iterative Fourier-transform algorithm applied to computer holography," J. Opt. Soc. Am. A 5, 1058 (1988). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited