OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 26 — Dec. 22, 2008
  • pp: 22099–22104

Wavelength-multiplexed distribution of highly entangled photon-pairs over optical fiber

Han Chuen Lim, Akio Yoshizawa, Hidemi Tsuchida, and Kazuro Kikuchi  »View Author Affiliations

Optics Express, Vol. 16, Issue 26, pp. 22099-22104 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (123 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the first experimental demonstration of wavelength-multiplexed entanglement distribution over optical fiber. Forty-four channels of polarization-entangled photon-pairs were produced from a single pulse-pumped, short periodically-poled lithium niobate waveguide and distributed over 10 km of dispersion-shifted optical fiber. Entanglement fidelities of the distributed photon-pairs exceeded 0.86 for all selected channels.

© 2008 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(270.5565) Quantum optics : Quantum communications

ToC Category:
Quantum Optics

Original Manuscript: October 28, 2008
Revised Manuscript: November 27, 2008
Manuscript Accepted: December 17, 2008
Published: December 19, 2008

Han Chuen Lim, Akio Yoshizawa, Hidemi Tsuchida, and Kazuro Kikuchi, "Wavelength-multiplexed distribution of highly entangled photon-pairs over optical fiber," Opt. Express 16, 22099-22104 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. K. Ekert, "Quantum cryptography based on Bell’s theorem," Phys. Rev. Lett. 67, 661-663 (1991). [CrossRef] [PubMed]
  2. G. Ribordy, J. Brendel, J.-D. Gautier, N. Gisin, and H. Zbinden, "Long-distance entanglement-based quantum key distribution," Phys. Rev. A 63, 012309 (2001). [CrossRef]
  3. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002). [CrossRef]
  4. M. Hillery, V. Buzek, and A. Berthiaume, "Quantum secret sharing," Phys. Rev. A 59, 1829-1834 (1999). [CrossRef]
  5. A. Karlsson, M. Koashi, and N. Imoto, "Quantum entanglement for secret sharing and secret splitting," Phys. Rev. A 59, 162-168 (1999). [CrossRef]
  6. H. Takesue and K. Inoue, "Quantum secret sharing based on modulated high-dimensional time-bin entanglement," Phys. Rev. A 74, 012315 (2006). [CrossRef]
  7. J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, "Distributed quantum computation over noisy channels," Phys. Rev. A 59, 4249-4254 (1999). [CrossRef]
  8. H. C. Lim, A. Yoshizawa, H. Tsuchida, and K. Kikuchi, "Distribution of polarization-entangled photon-pairs produced via spontaneous parametric down-conversion within a local-area fiber network: Theoretical model and experiment," Opt. Express,  16, 14512-14523 (2008). [CrossRef] [PubMed]
  9. A. Yoshizawa and H. Tsuchida, "Generation of polarization-entangled photon pairs in 1550 nm band by a fiber-optic two-photon interferometer," Appl. Phys. Lett. 85, 2457-2459 (2004). [CrossRef]
  10. H. Takesue and K. Inoue, "Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop," Phys. Rev. A 70, 031802(R) (2004). [CrossRef]
  11. X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, "Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band," Phys. Rev. Lett. 94, 053601 (2005). [CrossRef] [PubMed]
  12. H. C. Lim, A. Yoshizawa, H. Tsuchida, and K. Kikuchi, "Stable source of high quality telecom-band polarization-entangled photon-pairs based on a single, pulse-pumped, short PPLN waveguide," Opt. Express 16, 12460-12468 (2008). [CrossRef]
  13. I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legre, and N. Gisin, "Distribution of time-bin entangled qubits over 50 km of optical fiber," Phys. Rev. Lett. 93, 180502 (2004). [CrossRef] [PubMed]
  14. H. Takesue, "Long-distance distribution of time-bin entanglement generated in a cooled fiber," Opt. Express 14, 3453-3460 (2006). [CrossRef] [PubMed]
  15. C. Liang, K. F. Lee, J. Chen, and P. Kumar, "Distribution of fiber-generated polarization entangled photon-pairs over 100 km of standard fiber in OC-192 WDM environment," Proc. Optical Fiber Commun. Conf. (OFC), postdeadline paper PDP35 (2006). [CrossRef] [PubMed]
  16. T. Honjo, H. Takesue, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, and K. Inoue, "Long-distance distribution of time-bin entangled photon pairs over 100 km using frequency up-conversion detectors," Opt. Express 15, 13957-13964 (2007). [CrossRef] [PubMed]
  17. Q. Zhang, H. Takesue, S. W. Nam, C. Langrock, X. Xie, B. Baek, M. M. Fejer, and Y. Yamamoto, "Distribution of time-energy entanglement over 100 km fiber using superconducting single-photon detectors," Opt. Express 16, 5776-5781 (2008).
  18. K. Inoue and K. Shimizu, "Generation of quantum-correlated photon pairs in optical fiber: Influence of spontaneous Raman scattering," Jpn. J. Appl. Phys. 43, 8048-8052 (2004). [CrossRef] [PubMed]
  19. G. P. Agrawal, Fiber-Optic Communication Systems, 3rd Ed. (Wiley, 2002). [CrossRef] [PubMed]
  20. H. C. Lim, A. Yoshizawa, H. Tsuchida, and K. Kikuchi, "Broadband source of telecom-band polarization-entangled photon-pairs for wavelength-multiplexed entanglement distribution," Opt. Express,  16, 16052-16057 (2008). [CrossRef]
  21. R. W. Boyd, Nonlinear Optics, 3rd ed., (Academic Press, 2008). [CrossRef]
  22. J. Chen, G. Wu, Y. Li, E. Wu, and H. Zeng, "Active polarization stabilization in optical fibers suitable for quantum key distribution," Opt. Express 15, 17928-17936 (2007). [CrossRef] [PubMed]
  23. G. B. Xavier, G. Vilela de Faria, G. P. Temporao, and J. P. von der Weid, "Full polarization control for fiber optical quantum communication systems using polarization encoding," Opt. Express 16, 1867-1873 (2008).
  24. D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, "Measurement of qubits," Phys. Rev. A 64, 052312 (2001). [CrossRef] [PubMed]
  25. A. Verevkin, J. Zhang, R. Sobolewski, A. Lipatov, O. Okunev, G. Chulkova, A. Korneev, K. Smirnov, G. N. Gol'tsman, and A. Semenov, "Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range," Appl. Phys. Lett. 80, 4687-4689 (2002). [CrossRef] [PubMed]
  26. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communication, 6th ed., (Oxford, 2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited