OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 3 — Feb. 4, 2008
  • pp: 1423–1430

Strain induced tunable wavelength filters based on flexible polymer waveguide Bragg reflector

Kyung-Jo Kim, Jun-Kyu Seo, and Min-Cheol Oh  »View Author Affiliations


Optics Express, Vol. 16, Issue 3, pp. 1423-1430 (2008)
http://dx.doi.org/10.1364/OE.16.001423


View Full Text Article

Enhanced HTML    Acrobat PDF (583 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A tunable wavelength filter is demonstrated by imposing a strain on a polymeric Bragg reflection waveguide fabricated on a flexible substrate. The highly elastic property of flexible polymer device enables much wider tuning than the silica fiber. To produce a uniform grating pattern on a flexible plastic substrate, a post lift-off process along with an absorbing layer is incorporated. The flexible Bragg reflector shows narrow bandwidth, which is convincing the uniformity of the grating structure fabricated on plastic film. By stretching the flexible polymer device, the Bragg reflection wavelength is tuned continuously up to 45 nm for the maximum strain of 31,690 με, which is determined by the elastic expansion limit of waveguide polymer. From the linear wavelength shift proportional to the strain, the photoelastic coefficient of the ZPU polymer is found.

© 2008 Optical Society of America

OCIS Codes
(230.1480) Optical devices : Bragg reflectors
(230.3120) Optical devices : Integrated optics devices
(230.7408) Optical devices : Wavelength filtering devices
(130.5460) Integrated optics : Polymer waveguides

ToC Category:
Optical Devices

History
Original Manuscript: December 17, 2007
Revised Manuscript: January 17, 2008
Manuscript Accepted: January 17, 2008
Published: January 18, 2008

Citation
Kyung-Jo Kim, Jun-Kyu Seo, and Min-Cheol Oh, "Strain induced tunable wavelength filters based on flexible polymer waveguide Bragg reflector," Opt. Express 16, 1423-1430 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-3-1423


Sort:  Year  |  Journal  |  Reset  

References

  1. G. Scott Glaesemann, JamesA. Smith, Donald A. Clark, and Renie Johnson, "Measuring thermal and mechanical stresses on optical fiber in a DC module using Fiber Bragg Gratings," J. Lightwave Technol. 23, 3461-3468 (2005). [CrossRef]
  2. M.-C. Oh, K.-J. Kim, J.-H. Lee, H.-X. Chen, and K.-N. Koh, "Polymeric waveguide biosensors with calixarene monolayer for detecting potassium ion concentration," Appl. Phys. Lett. 89, 251104 (2006). [CrossRef]
  3. M. Aziz, J. Pfeiffer, M. Wohlfarth, C. Luber, S. Wu, and P. Meissner, "A new and simple concept of tunable two-chip microcavities for filter applications in WDM systems," IEEE Photon. Technol. Lett. 12, 1522-1524 (2000). [CrossRef]
  4. P. Rabiei and W. H. Steier, "Tunable polymer double micro-ring filters," IEEE Photon. Technol. Lett. 15, 1255-1257 (2003). [CrossRef]
  5. C. S. Goh, M. R. Mokhtar, S. A. Butler, S. Y. Set, K. Kikuchi, and M. Ibsen, " Wavelength tuning of fiber Bragg gratings over 90 nm using a simple tuning package," IEEE Photon. Technol. Lett. 15, 557-559 (2003). [CrossRef]
  6. M.-C. Oh, H.-J. Lee, M.-H. Lee, J.-H. Ahn, S.-G. Han, and H.-G. Kim, "Tunable wavelength filters with Bragg gratings in polymer waveguides," Appl. Phys. Lett. 73, 2543-2545 (1998). [CrossRef]
  7. H. Zou, K. W. Beeson, and L. W. Shacklette, "Tunable Planar Polymer Bragg Gratings having exceptionally low polarization sensitivity," J. Lightwave Technol. 21, 1083-1088 (2003). [CrossRef]
  8. A. Kocabas and A. Aydinli, "Polymeric waveguide Bragg grating filter using soft lithography," Opt. Express 14, 10228-10232 (2006). [CrossRef] [PubMed]
  9. W.-C. Chuang, C.-K. Chao, and C.-T. Ho, "Fabrication of high-resolution periodical structure on polymer waveguides using a replication process," Opt. Express 15, 8649-8659 (2007). [CrossRef] [PubMed]
  10. G. Jeong, J.-H. Lee, MahnY. Park, C. Y. Kim, S.-H. Cho, W. Lee, and B. W. Kim, "Over 26-nm wavelength tunable external cavity laser based on polymer waveguide platforms for WDM access networks," IEEE Photon. Technol. Lett. 18,2102-2104 (2006). [CrossRef]
  11. Y.-O. Noh, C.-H. Lee, J.-M. Kim, W.-Y. Hwang, Y.-H. Won, H.-J. Lee, S.-G. H. and M.-C. Oh, "Polymer waveguide variable optical attenuator and its reliability," Optics Commun. 242, 533-540 (2004). [CrossRef]
  12. S.-H. Nam, J.-W. Kang, and J.-J Kim, "Temperature-insensitive flexible polymer wavelength filter fabricated on polymer substrates," Appl. Phys. Lett. 87, 233504 (2005). [CrossRef]
  13. B. Sepulveda, J. Sanchez del Rio, M. Moreno, F. J. Blanco, K. Mayora, C. Dominguez, and L. M. Lechuga, "Optical biosensor microsystems based on the integration of highly sensitive Mach-Zehnder interferometer devices," J. Opt. A: Pure Appl. Opt. 8, 561-566 (2006). [CrossRef]
  14. M.-C. Oh, H. Zhang, A. Szep, W. H. Steier, C. Zhang, L. R. Dalton, H. Erlig, Y. Chang, B. Tsap, and H. R. Fetterman, "Recent advances in electro-optic polymer modulators incorporating phenyltetraene bridged chromophore," IEEE J. Sel. Top. Quantum Electron. 7, 826-835 (2001). [CrossRef]
  15. M.-C. Oh, M.-H. Lee, J.-H. Ahn, H.-J. Lee, and S. G. Han, "Polymeric wavelength filters with polymer gratings," Appl. Phys. Lett. 72, 1559-1561 (1998). [CrossRef]
  16. H.-C. Song, M.-C. Oh, S.-W. Ahn, and W. H. Steier, "Flexible low voltage electro-optic polymer modulators," Appl. Phys. Lett. 82, 4432-4434 (2003). [CrossRef]
  17. ZPU polymer is available from ChemOptics Co., Yusong, Daejeon, 305-380, South Korea.
  18. Y. Zhu, P. Shum, C. Lu, M. B. Lacquet, P. L. Swart, and A. A. Chtcherbakov, "Temperature insensitive measurements of static displacements using a fiber Bragg grating," Opt. Express 11, 1918-1924 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited