OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 3 — Feb. 4, 2008
  • pp: 1431–1439

Monostatic lidar/radar invisibility using coated spheres

Peng-Wang Zhai, Yu You, George W. Kattawar, and Ping Yang  »View Author Affiliations


Optics Express, Vol. 16, Issue 3, pp. 1431-1439 (2008)
http://dx.doi.org/10.1364/OE.16.001431


View Full Text Article

Enhanced HTML    Acrobat PDF (104 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The Lorenz-Mie theory is revisited to explicitly include materials whose permeability is different from unity. The expansion coefficients of the scattered field are given for light scattering by both homogeneous and coated spheres. It is shown that the backscatter is exactly zero if the impedance of the spherical particles is equal to the intrinsic impedance of the surrounding medium. If spherical particles are sufficiently large, the zero backscatter can be explained as impedance matching using the asymptotic expression for the radar backscattering cross section. In the case of a coated sphere, the shell can be regarded as a cloak if the product of the thickness and the imaginary part of the refractive index of the outer shell is large.

© 2008 Optical Society of America

OCIS Codes
(290.5850) Scattering : Scattering, particles
(280.1350) Remote sensing and sensors : Backscattering

ToC Category:
Scattering

History
Original Manuscript: October 17, 2007
Revised Manuscript: January 15, 2008
Manuscript Accepted: January 17, 2008
Published: January 18, 2008

Citation
Peng-Wang Zhai, Yu You, George W. Kattawar, and Ping Yang, "Monostatic lidar/radar invisibility using coated spheres," Opt. Express 16, 1431-1439 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-3-1431


Sort:  Year  |  Journal  |  Reset  

References

  1. J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling Electromagnetic Fields," Science 312, 1780-1782 (2006). [CrossRef] [PubMed]
  2. U. Leonhardt, "Optical Conformal Mapping," Science 312, 1777-1780 (2006). [CrossRef] [PubMed]
  3. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science 314, 977- 980 (2006). [CrossRef] [PubMed]
  4. A. J. Ward and J. B. Pendry,"Refraction and geometry in maxwells equations," J. Mod. Opt. 43, 773-793 (1996). [CrossRef]
  5. D. Schurig, J. B. Pendry, and D. R. Smith, "Calculation of material properties and ray tracing in transformation media," Opt. Express 14, 9794-9804 (2006). [CrossRef] [PubMed]
  6. S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, "Full-wave simulations of electromagnetic cloaking structures," Phys. Rev. E 74, 036621-1-5 (2006).
  7. F. Zolla, S. Guenneau, A. Nicolet, and J. B. Pendry, "Electromagnetic analysis of cylindrical invisibility cloaks and the mirage effect," Opt. Lett. 32, 1069-1071 (2007). [CrossRef] [PubMed]
  8. H. Chen, B. I. Wu, B. Zhang, and J. A. Kong, "Electromagnetic Wave Interactions with a Metamaterial Cloak," Phys. Rev. Lett. 99, 063903-1-4 (2007). [CrossRef] [PubMed]
  9. B. Zhang, H. Chen, B. Wu, Y. Luo, L. Ran, and J. A. Kong, "Response of a cylindrical invisibility cloak to electromagnetic waves," Phys. Rev. B 76, 121101-1-4 (R) (2007) [CrossRef]
  10. A. Alu and N. Engheta, "Achieving transparency with plasmonic and metamaterial coatings," Phys. Rev. E 72, 016623-1-9 (2005). [CrossRef]
  11. G. W. Milton and N.-A. P. Nicorovici, "On the cloaking effects associated with anomalous localized resonance," Proc. R. Soc. London, Ser. A 462, 3027-3059 (2006). [CrossRef]
  12. G. Mie, "Beigrade zur optik truber medien, speziell kolloidaler metallosungen," Ann. Phys. (Leipzig) 25, 377- 455 (1908). [CrossRef]
  13. J. Maxwell Garnett, "Colours in metal glasses and in metallic films," Philos. Trans. R. Soc. London 203, 385 (1904). [CrossRef]
  14. J.R. Liu, M. Itoh, and K.-I Machida, "Frequency dispersion of complex permeability and permittivity on ironbased nanocomposites derived from rare earth-iron intermetallic compounds," J. Alloys Compd. 408-412, 1396- 1399 (2006). [CrossRef]
  15. H.C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
  16. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  17. J. D. Jackson, Classical Electrodynamics, 3rd Edition (Wiley-VCH, 1998),
  18. W. J. Wiscombe, "Mie scattering calculation," NCAR Tech. Note TN-140+STR (National Center for Atmospheric Research, Boulder, Colo., 1979).
  19. W.J. Wiscombe, "Improved Mie scattering algorithms," Appl. Opt. 19, 1505-1509 (1980). [CrossRef] [PubMed]
  20. O. B. Toon and T. P. Ackerman, "Algorithms for the calculation of scattering by starified spheres," Appl. Opt. 20, 3657-3660 (1981). [CrossRef] [PubMed]
  21. P. -W. Zhai, Y. -K. Lee, G. W. Kattawar, and P. Yang, "Implementing the Near- to Far-Field Transformation in the Finite-Difference Time-Domain Method," Appl. Opt. 43, 3738-3746 (2004) [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited