OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 3 — Feb. 4, 2008
  • pp: 1475–1480

Modeling and design methodology for metal-insulator-metal plasmonic Bragg reflectors

Amir Hosseini, Hamid Nejati, and Yehia Massoud  »View Author Affiliations


Optics Express, Vol. 16, Issue 3, pp. 1475-1480 (2008)
http://dx.doi.org/10.1364/OE.16.001475


View Full Text Article

Enhanced HTML    Acrobat PDF (335 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we present a modeling and design methodology based on characteristic impedance for plasmonic waveguides with Metal-Insulator-Metal (MIM) configuration. Finite-Difference Time-Domain (FDTD) simulations indicate that the impedance matching results in negligible reflection at discontinuities in MIM heterostructures. Leveraging the MIM impedance model, we present a general Transfer Matrix Method model for MIM Bragg reflectors and validate our model against FDTD simulations. We show that both periodically stacked dielectric layers of different thickness or different material can achieve the same performance in terms of propagation loss and minimum transmission at the central bandgap frequency in the case of a finite number of periods.

© 2008 Optical Society of America

OCIS Codes
(230.1480) Optical devices : Bragg reflectors
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

History
Original Manuscript: December 17, 2007
Revised Manuscript: January 16, 2008
Manuscript Accepted: January 16, 2008
Published: January 18, 2008

Citation
Amir Hosseini, Hamid Nejati, and Yehia Massoud, "Modeling and design methodology for metal-insulator-metal plasmonic Bragg reflectors," Opt. Express 16, 1475-1480 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-3-1475


Sort:  Year  |  Journal  |  Reset  

References

  1. M. Rattier, H. Benisty, R. Stanley, J.-F. Carlin, R. Houdre, U. Oesterle, C. Smith, C. Weisbuch, and T. Krauss, "Toward ultrahigh-efficiency aluminum oxide microcavitylight-emitting diodes: guided mode extraction by photonic crystals," IEEE J. Sel. Top. Quantum. Electron. 8, 238-247 (2002). [CrossRef]
  2. J. Wierer, D. Kellogg, and N. Holonyak, "Tunnel contact junction native-oxide aperture and mirror vertical-cavity surface-emitting lasers and resonant-cavity light-emitting diodes," Appl. Phys. Lett. 74, 926-928 (1999). [CrossRef]
  3. D. Zhao, K. Chan, Y. Liu, L. Zhang, and I. Bennion, "Wavelength-switched optical pulse generation in a fiber ring laser with a Fabry-Perot semiconductor modulator and a sampled fiber Bragg grating," IEEE Photon. Technol. Lett. 13, 191-193 (2001). [CrossRef]
  4. J. Dionne, L. Sweatlock, and H. Atwater, "Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization," Phys. Rev. B 73, 035407 (2006). [CrossRef]
  5. G. Veronis and S. Fan, "Subwavelength plasmonic waveguide structures based on slots in thin metal films," Proceed. SPIE 6123 (2006). [CrossRef]
  6. P. Hobson, S. Wedge, J. Wasey, I. Sage, and W. Barnes, "Surface plasmon mediated emission from organic light-emitting diodes," Adv. Mater. 14, 1393-1396 (2005). [CrossRef]
  7. A. Tredicucci, C. Gmachl, F. Capasso, A. Hutchinson, D. Sivco, and A. Cho, "Single-mode surface-plasmon laser," Appl. Phys. Lett. 76, 2164-2166 (2000). [CrossRef]
  8. C. Sirtori, J. Faist, F. Capasso, D. Sivco, A. Hutchinson, and A. Cho, "Quantum cascade laser with plasmonenhanced waveguide operating at 8.4 u m wavelength," Appl. Phys. Lett. 66, 3242-3244 (1995). [CrossRef]
  9. H. Ditlbacher, J. Krenn, G. Schider, A. Leitner, and F. Aussenegg, "Two-dimensional optics with surface plasmon polaritons," Appl. Phys. Lett. 81, 1762-1764 (2002). [CrossRef]
  10. J.-C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. Gonzalez, and A.-L. Baudrion, "Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides," Phys. Rev. B 70, 235406 (2004). [CrossRef]
  11. B. Wang and G. P. Wang, "Plasmon Bragg reflectors and nanocavities on flat metallic surfaces," Appl. Phys. Lett. 87, 013107 (2005). [CrossRef]
  12. A. Hosseini and Y. Massoud, "A low-loss metal-insulator-metal plasmonic bragg reflector," Opt. Express 14, 318-323 (2006). [CrossRef]
  13. Z. Han, E. Forsberg, and S. He, "Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides," IEEE Photon. Technol. Lett. 19, 91-93 (2007). [CrossRef]
  14. G. Veronis and S. Fan, "Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides," Appl. Phys. Lett. 87, 131102 (2005). [CrossRef]
  15. I. Nusinsky and A. A. Hardy, "Band-gap analysis of one-dimensional photonic crystals and conditions for gap closing," Phys. Rev. B 73, 125104 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited