OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 3 — Feb. 4, 2008
  • pp: 1529–1545

Substrate-enhanced infrared near-field spectroscopy

Javier Aizpurua, Thomas Taubner, F. Javier García de Abajo, Markus Brehm, and Rainer Hillenbrand  »View Author Affiliations

Optics Express, Vol. 16, Issue 3, pp. 1529-1545 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (415 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study the amplitude and phase signals detected in infrared scattering-type near field optical microscopy (s-SNOM) when probing a thin sample layer on a substrate. We theoretically describe this situation by solving the electromagnetic scattering of a dipole near a planar sample consisting of a substrate covered by thin layers. We perform calculations to describe the effect of both weakly (Si and SiO2) and strongly (Au) reflecting substrates on the spectral s-SNOM signal of a thin PMMA layer. We theoretically predict, and experimentally confirm an enhancement effect in the polymer vibrational spectrum when placed on strongly reflecting substrates. We also calculate the scattered fields for a resonant tip-substrate interaction, obtaining a dramatic enhancement of the signal amplitude and spectroscopic contrast of the sample layer, together with a change of the spectral line shape. The enhanced contrast opens the possibility to perform ultra-sensitive near field infrared spectroscopy of monolayers and biomolecules.

© 2008 Optical Society of America

OCIS Codes
(240.6490) Optics at surfaces : Spectroscopy, surface
(300.6340) Spectroscopy : Spectroscopy, infrared
(180.4243) Microscopy : Near-field microscopy
(290.5825) Scattering : Scattering theory

ToC Category:

Original Manuscript: November 21, 2007
Revised Manuscript: January 16, 2008
Manuscript Accepted: January 17, 2008
Published: January 22, 2008

Virtual Issues
Vol. 3, Iss. 3 Virtual Journal for Biomedical Optics

Javier Aizpurua, Thomas Taubner, F. Javier García de Abajo, Markus Brehm, and Rainer Hillenbrand, "Substrate-enhanced infrared near-field spectroscopy," Opt. Express 16, 1529-1545 (2008)

Sort:  Year  |  Journal  |  Reset  


  1. Y. Inouye, and S. Kawata, "Near-field scanning optical microscope with a metallic probe tip," Opt. Lett. 19,159-161 (1994). [CrossRef] [PubMed]
  2. F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, "Scanning Interferometric Apertureless Microscopy: Optical Imaging at 10 Angstrom Resolution," Science 269,1083-1085 (1995). [CrossRef] [PubMed]
  3. R. Hillenbrand, and F. Keilmann, "Complex optical constants on a subwavelength scale," Phys. Rev. Lett. 85,3029-3032 (2000). [CrossRef] [PubMed]
  4. R. Bachelot, G. Lerondel, S. Blaize, S. Aubert, A. Bruyant, P. Royer, "Probing photonic and optoelectronic structures by apertureless scanning near-field optical microscopy," Microsc. Res. Tech. 64,441-452 (2004). [CrossRef] [PubMed]
  5. N. Anderson, A. Bouhelier, and L. Novotny, "Near-field photonics: tip-enhanced microscopy and spectroscopy on the nanoscale," J. Opt. A 8,S227-S233 (2006). [CrossRef]
  6. Z. H. Kim, and S. R. Leone, "High-resolution apertureless near-field optical imaging using gold nanosphere probes," J. Phys. Chem. B 110,19804-19809 (2006) [CrossRef] [PubMed]
  7. A. Lahrech, R. Bachelot, P. Gleyzes, and A. C. Boccara, "Infrared-reflection-mode near-field microscopy using an apertureless probe with a resolution of lambda / 600," Opt. Lett. 21,1315-1317 (1995). [CrossRef]
  8. B. Knoll, and F. Keilmann, "Near-field probing of vibrational absorption for chemical microscopy," Nature 399,134-137 (1999). [CrossRef]
  9. B. B. Akhremitchev, and G. C. Walker, "Apertureless Scanning Near-Field Infrared Microscopy of Rough Polymeric Surface," Langmuir. 17,2774-2781 (2001). [CrossRef]
  10. I. Kopf, J. S. Samson, G. Wollny, C. Grunwald, E. Brundermann, and M. Havenith, "Chemical imaging of microstructured self-assembled monolayers with nanometer resolution," J. Phys. Chem. C 111,8166-8171 (2007). [CrossRef]
  11. M.B. Raschke, L. Molina, T. Elsaesser, D.H. Kim,W. Knoll, and K. Hinrichs, "Apertureless near-field vibrational imaging of block-copolymer nanostructures with ultrahigh spatial resolution," ChemPhysChem 6, 2197-2203 (2005). [CrossRef] [PubMed]
  12. A. Huber, D. Kazantsev, F. Keilmann, J. Wittborn, and R. Hillenbrand, "Simultaneous infrared material recognition and conductivity mapping by nanoscale near-field microscopy," Adv. Mater. 19,2209-2212 (2007). [CrossRef]
  13. T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, "Near-field Microscopy Through a SiC Superlens," Science 313,1595-1595 (2006). [CrossRef] [PubMed]
  14. A. Cvitkovic, N. Ocelic, J. Aizpurua, R. Guckenberger, and R. Hillenbrand, "Infrared Imaging of Single Nanoparticles via Strong Field Enhancement in a Scanning Nanogap," Phys. Rev. Lett. 97,060801 (2006). [CrossRef] [PubMed]
  15. A. Cvitkovic, N. Ocelic, and R. Hillenbrand, "Material-specific optical recognition of sub-10 nm particles by substrate-enhanced scattering-type near-field microscopy," Nano Lett. 7,3177-3181 (2007). [CrossRef] [PubMed]
  16. T. Taubner, R. Hillenbrand, and F. Keilmann, "Nanoscale polymer identification by spectral signature in scattering infrared near-field microscopy," Appl. Phys. Lett. 85,5064-5066 (2004). [CrossRef]
  17. M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, "Infrared Spectroscopic Mapping of Single Nanoparticles and Viruses at Nanoscale Resolution," Nanoletters 6,1307-1310 (2006). [CrossRef]
  18. T. Taubner, R. Hillenbrand, and F. Keilmann, "Performance of visible and mid-infrared scattering-type near-field optical microscopes," J. Microsc. 210,311-314 (2003). [CrossRef] [PubMed]
  19. J. A. Porto, P. Johansson, S. P. Apell, and T. Lopez-Rios, "Resonance shift effects in apertureless scanning near-field optical microscopy," Phys. Rev. B. 67, 085409 (2003). [CrossRef]
  20. R. M. Roth, N. C. Panoiu, M. M. Adams, R. M. Osgood, C. C. Neacsu, and M. B. Raschke, "Resonant-plasmon field enhancement from asymmetrically illuminated conical metallic-probe tips," Opt. Express 14,2921-2931 (2006). [CrossRef] [PubMed]
  21. R. Esteban, R. Vogelgesang, and K. Kern, "Simulation of optical near and far fields of dielectric apertureless scanning probe," Nanotechnology 17,475-482 (2006). [CrossRef]
  22. R. Esteban, R. Vogelgesang, and K. Kern, "Tip-substrate interaction in optical near-field microscopy," Phys. Rev. B 75,195410 (2007). [CrossRef]
  23. F. Keilmann, and R. Hillenbrand, "Near-field optical microscopy by elastic light scattering from a tip," Phil. Trans. Roy. Soc. A 362, 787-805 (2004). [CrossRef]
  24. V. Romanov, and G. C. Walker, "Infrared near-field detection of a narrow resonance due to molecular vibrations in a nanoparticle," Langmuir 23,2829-2837 (2007). [CrossRef] [PubMed]
  25. R. Hillenbrand, T. Taubner, and F. Keilmann, "Phonon-enhanced light-matter interaction at the nanometer scale," Nature 418,159-162 (2002). [CrossRef] [PubMed]
  26. T. Taubner, F. Keilmann, and R. Hillenbrand, "Nanomechanical resonance tuning and phase effects in optical near-field interaction," Nano Lett. 4,1669-1672 (2004). [CrossRef]
  27. M. B. Raschke and C. Lienau, "Apertureless near-field optical microscopy: Tip-sample coupling in elastic light scattering," Appl. Phys. Lett. 83,5089-5091 (2003). [CrossRef]
  28. T. Taubner, F. Keilmann, and R. Hillenbrand, "Nanoscale-resolved subsurface imaging by scattering-type near-field optical microscopy," Opt. Express 13,8893-8899 (2005). [CrossRef] [PubMed]
  29. N. Anderson, P. Anger, A. Hartschuh, and L. Novotny, "Subsurface Raman imaging with nanoscale resolution," Nano Lett. 6,744-749 (2006). [CrossRef] [PubMed]
  30. G. Y. Panasyuk, V. A. Markel, P. S. Carney, and J. C. Schotland, "Nonlinear inverse scattering and threedimensional near-field optical imaging," Appl. Phys. Lett. 89,221116 (2006). [CrossRef]
  31. E.G. Bortchagovsky, and U. C. Fischer, "On the modulation of optical transmission spectra of thin dye layers by a supporting medium," J. Chem. Phys. 117,5384-5392 (2002). [CrossRef]
  32. S. G. Moiseev, and S. V. Sukhov, "Near-Field optical microscopy in the presence of an intermediate layer," Opt. Spectrosc. 98,308-313 (2005). [CrossRef]
  33. M. Brehm, "Infrarot-Mikrospektroskopie mit einem Nahfeldmikroskop," PhD. Thesis 2006, TU Mnchen, Verlag Dr. Hut, ISBN 978-3-89963-482-2.
  34. N. Ocelic, A. Huber, and R. Hillenbrand, "Pseudoheterodyne detection for background-free near-field spectroscopy," App. Phys. Lett. 89,101124 (2006). [CrossRef]
  35. H. Weyl, "Ausbreitung elektromagnetischer Wellen uber einem ebenen Leiter," Ann. Phys. (Leipzig) 60,481-500 (1919). [CrossRef]
  36. G. W. Ford and W. H. Weber, "Electromagnetic interactions of molecules with metal surfaces," Phys. Rep. 113,195-287 (1984). [CrossRef]
  37. F. J. García de Abajo, "Light scattering by particle and hole arrays," Rev. Mod. Phys. 79,1267-1290 (2007). [CrossRef]
  38. E. D. Palik, "Handbook of optical constants of solids," Academic, New York, (1985).
  39. U. Fano, "Effects of Configuration Interaction on Intensities and Phase Shifts," Phys. Rev. B 124,1866-1878 (1961). [CrossRef]
  40. B.B. Akhremitchev, Y.J. Sun, L. Stebounova, and G.C. Walker, "Monolayer-sensitive infrared imaging of DNA stripes using apertureless near-field microscopy," Langmuir 18,5325-5328 (2002). [CrossRef]
  41. F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, and S. Karim, "Resonances of individual metal nanowires in the infrared," Appl. Phys. Lett. 89,253104 (2006). [CrossRef]
  42. K.R. Rodriguez, H. Tian, J.M. Heer, S. Teeters-Kennedy, and J.V. Coe, "Interaction of an infrared surface plasmon with an excited molecular vibration," J. Chem. Phys. 126,151101 (2007). [CrossRef] [PubMed]
  43. H. Wang, J. Kundu, and N. J. Halas, "Plasmonic Nanoshell Arrays Combine Surface-Enhanced Vibrational Spectroscopies on a Single Substrate," Angew. Chem. 46,9040-9044 (2007). [CrossRef]
  44. A. V. Zayats, "Electromagnetic field enhancement in the context of apertureless near-field microscopy," Opt. Comm. 161,156-162 (1999). [CrossRef]
  45. A. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, and O. J. F. Martin, "Controlling the Fano interference in a plasmonic lattice," Phys. Rev. B 76, 201405(R) (2007). [CrossRef]
  46. U. C. Fischer, "Latex Projections Patterns, in Procedures in Scanning Probe Microscopy," Editors: R.J. Colton, et al., John Wiley & Sons. 10-11 (1998).
  47. T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, "Nanosphere lithography: Tunable Localised Surface Plasmon Resonance Spectra of Silver Nanoparticles," J. Phys. Chem. B 104,10549-10556 (2000). [CrossRef]
  48. M.S. Anderson, "Enhanced infrared absorption with dielectric nanoparticles," Appl. Phys. Lett. 83,2964-2966 (2003). [CrossRef]
  49. F. Neubrech, A. Pucci, T. W. Cornelius, and S. Karim, A. Garcia-Etxarri, and J. Aizpurua, "Giant vibrational signals from molecules by the action of a tailored infrared nanoantenna," in preparation.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited