OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 3 — Feb. 4, 2008
  • pp: 1590–1599

Two-photon-induced photoluminescence imaging of tumors using near-infrared excited gold nanoshells

Jaesook Park, Arnold Estrada, Kelly Sharp, Krystina Sang, Jon A. Schwartz, Danielle K. Smith, Chris Coleman, J. Donald Payne, Brian A. Korgel, Andrew K. Dunn, and James W. Tunnell  »View Author Affiliations

Optics Express, Vol. 16, Issue 3, pp. 1590-1599 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (681 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Gold nanoshells (dielectric silica core/gold shell) are a novel class of hybrid metal nanoparticles whose unique optical properties have spawned new applications including more sensitive molecular assays and cancer therapy. We report a new photo-physical property of nanoshells (NS) whereby these particles glow brightly when excited by near-infrared light. We characterized the luminescence brightness of NS, comparing to that of gold nanorods (NR) and fluorescent beads (FB). We find that NS are as bright as NR and 140 times brighter than FB. To demonstrate the potential application of this bright two-photon-induced photoluminescence (TPIP) signal for biological imaging, we imaged the 3D distribution of gold nanoshells targeted to murine tumors.

© 2008 Optical Society of America

OCIS Codes
(190.4180) Nonlinear optics : Multiphoton processes
(250.5230) Optoelectronics : Photoluminescence

ToC Category:
Nonlinear Optics

Original Manuscript: December 12, 2007
Revised Manuscript: January 17, 2008
Manuscript Accepted: January 20, 2008
Published: January 23, 2008

Virtual Issues
Vol. 3, Iss. 3 Virtual Journal for Biomedical Optics

Jaesook Park, Arnold Estrada, Kelly Sharp, Krystina Sang, Jon A. Schwartz, Danielle K. Smith, Chris Coleman, J. D. Payne, Brian A. Korgel, Andrew K. Dunn, and James W. Tunnell, "Two-photon-induced photoluminescence imaging of tumors using near-infrared excited gold nanoshells," Opt. Express 16, 1590-1599 (2008)

Sort:  Year  |  Journal  |  Reset  


  1. C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, "Immunotargeted nanoshells for integrated cancer imaging and therapy," Nano Lett. 5, 709-711 (2005). [CrossRef] [PubMed]
  2. R. D. Averitt, D. Sarkar, and N. J. Halas, "Plasmon resonance shifts of Au-coated Au2S nanoshells: insight into multicomponent nanoparticle growth," Phys. Rev. Lett. 78, 4217-4220 (1997). [CrossRef]
  3. S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, "Nanoengineering of optical resonances," Chem. Phys. Lett. 288, 243-247 (1998). [CrossRef]
  4. S. J. Oldenburg, J. B. Jackson, S. L. Westcott, and N. J. Halas, "Light scattering from dipole and quadrupole nanoshell antennas," Appl. Phys. Lett. 75, 2897-2899 (1999). [CrossRef]
  5. E. Prodan, and P. Nordlander, "Structural tunability of the plasmon resonances in metallic nanoshells," Nano Lett. 3, 543-547 (2003). [CrossRef]
  6. L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, "Nanoscale imaging of chemical interactions: fluorine on graphite," Proc. Natl. Acad. Sci. U.S.A. 100, 13549-13554 (2003). [CrossRef] [PubMed]
  7. H. Maeda, J. Fang, T. Inutsuka, and Y. Kitamoto, "Vascular permeability enhancement in solid tumor: various factors, mechanisms involved and its implications," Int. Immunopharmacol. 3, 319-328 (2003). [CrossRef] [PubMed]
  8. D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, "Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles," Cancer Lett. 209, 171-176 (2004). [CrossRef] [PubMed]
  9. A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, "Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy," Nano Lett. 7, 1929-1934 (2007). [CrossRef] [PubMed]
  10. M. Ferrari, "Cancer nanotechnology: opportunities and challenges," Nat. Rev. Cancer 5, 161-171 (2005). [CrossRef] [PubMed]
  11. C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, "Nanoshell-enabled photonics-based imaging and therapy of cancer,"Technol. Cancer Res. Treat. 3, 33-40 (2004). [PubMed]
  12. C. Loo, L. Hirsch, M. H. Lee, E. Chang, J. West, N. Halas and R. Drezek, "Gold nanoshell bioconjugates for molecular imaging in living cells," Opt. Lett. 30, 1012-1014 (2005). [CrossRef] [PubMed]
  13. C. Wu, X. Liang, and H. Jiang, "Metal nanoshells as a contrast agent in near-infrared diffuse optical tomography," Opt. Commun. 253, 214-221 (2005). [CrossRef]
  14. A. Mooradian, "Photoluminescence of metals," Phys. Rev. Lett. 22, 185-187 (1969). [CrossRef]
  15. K. Imura, T. Nagahara, and H. Okamoto, "Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes," J. Phys. Chem. B 109,13214-13220 (2005). [CrossRef]
  16. G. T. Boyd, Z. H. Yu, and Y. R. Shen, "Photoinduced luminescence from the noble metal and its enhancement on roughened surfaces," Phys. Rev. B 33, 7923-7936 (1986). [CrossRef]
  17. H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. Cheng, "In vitro and in vivo two-photon luminescence imaging of single gold nanorods," Proc. Natl. Acad. Sci. U.S.A. 102, 15752-15756 (2005). [CrossRef] [PubMed]
  18. N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, "Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods," Nano Lett. 7, 941-945 (2007). [CrossRef] [PubMed]
  19. W. R. Zipfel, R. M. Williams, and W. W. Webb, "Nonlinear magic: Multiphoton. microscopy in the biosciences," Nat. Biotechnol. 21, 1369-1377 (2003). [CrossRef] [PubMed]
  20. D. G. Duff, A. Baiker, and P. P. Edwards, "A new hydrosol of gold clusters. 1. formation and particle size. Variation," Langmuir 9, 2301-2309 (1993). [CrossRef]
  21. X. H. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, "Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods," J. Am. Chem. Soc. 128, 2115-2120 (2006). [CrossRef] [PubMed]
  22. M. R. Beversluis, A. Bouhelier, and L. Novotny, "Continuum generation from single gold nanostructures through near-field mediated intraband transitions," Phys. Rev. B 68, 115433-1-115433-10 (2003). [CrossRef]
  23. N. Nishimura, C. B. Schaffer, B. Friedman, P. S. Tsai, P. D. Lyden, and D. Kleinfeld, "Targeted insult to subsurface cortical blood vessels using ultrashort laser pulses: three models of stroke," Nat. Methods 3, 99-108 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (1902 KB)     
» Media 2: MOV (1903 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited