OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 3 — Feb. 4, 2008
  • pp: 1659–1668

Photodetection in silicon beyond the band edge with surface states

T. Baehr-Jones, M. Hochberg, and A. Scherer  »View Author Affiliations

Optics Express, Vol. 16, Issue 3, pp. 1659-1668 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (3398 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Silicon is an extremely attractive material platform for integrated optics at telecommunications wavelengths, particularly for integration with CMOS circuits. Developing detectors and electrically pumped lasers at telecom wavelengths are the two main technological hurdles before silicon can become a comprehensive platform for integrated optics. We report on a photocurrent in unimplanted SOI ridge waveguides, which we attribute to surface state absorption. By electrically contacting the waveguides, a photodetector with a responsivity of 36 mA/W and quantum efficiency of 2.8% is demonstrated. The response is shown to have minimal falloff at speeds of up to 60 Mhz.

© 2008 Optical Society of America

OCIS Codes
(040.0040) Detectors : Detectors
(040.6040) Detectors : Silicon
(060.4080) Fiber optics and optical communications : Modulation
(130.0130) Integrated optics : Integrated optics
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(230.0040) Optical devices : Detectors

ToC Category:

Original Manuscript: September 19, 2007
Revised Manuscript: January 14, 2008
Manuscript Accepted: January 15, 2008
Published: January 24, 2008

T. Baehr-Jones, M. Hochberg, and A. Scherer, "Photodetection in silicon beyond the band edge with surface states," Opt. Express 16, 1659-1668 (2008)

Sort:  Year  |  Journal  |  Reset  


  1. M. Lipson, "Guiding, modulating, and emitting light on silicon - Challenges and opportunities," J. of Lightwave Technol. 23, 4222-4238 (2005). [CrossRef]
  2. B. Jalali and S. Fathpour, "Silicon photonics," J. of Lightwave Technol. 24, 4600-4615 (2006). [CrossRef]
  3. T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, "High-Q resonators in thin silicon-on-insulator," Appl. Phys. Lett. 85, 3346-3347 (2004). [CrossRef]
  4. C. P. Michael, M. Borselli, T. J. Johnson, C. Chrystal, and O. Painter, "An optical fiber-taper probe for wafer-scale microphotonic device characterization," Opt. Express 15, 4745-4752 (2007). [CrossRef] [PubMed]
  5. A. Liu,  et al. "High-speed optical modulation based on carrier depletion in a silicon waveguide," Opt. Express 15, 660-668 (2007). [CrossRef] [PubMed]
  6. V. Almeida, R. Panepucci, and M. Lipson, "Nanotaper for compact mode conversion," Opt. Lett. 28, 1302-1304 (2003). [CrossRef] [PubMed]
  7. A. Liu, R. Jones, O. Cohen, D. Hak, and M. Paniccia, "Optical amplification and lasing by stimulated raman scattering in silicon waveguides," J. of Lightwave Technol. 24, 1440-1455 (2006). [CrossRef]
  8. R. A. Soref, "Single-Crystal silicon - a new material for 1.3 and 1.6 mu-m integrated-optical components," Electron Lett. 21, 953-954 (1985). [CrossRef]
  9. T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, "Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements," Appl. Phys. Lett. 81, 1323-1325 (2002). [CrossRef]
  10. G. Roelkens, D. Van Thourhout, R. Baets, R. Notzel, and M. Smit, "Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a Silicon-on-Insulator waveguide circuit," Opt. Express 14, 8154-8159 (2006). [CrossRef] [PubMed]
  11. J. Liu, D. Pan, S. Jongthammanurak, K. Wanda, L. Kimerling, and J. Michel, "Design of monolithically integrated GeSi electroabsorption modulators and photodetectors on an SOI platform," Opt. Express 15, 623-628 (2007). [CrossRef] [PubMed]
  12. M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, "CMOS-compatible all-si high-speed waveguide photodiodes with high responsivity in near-infrared communication band," IEEE Photon. Technol. Lett. 19, 152-154 (2007). [CrossRef]
  13. M. Borselli, T. Johnson, O. Painter, "Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment," Opt. Express 13, 1515-1530 (2005). [CrossRef] [PubMed]
  14. V. Almeida, R. Panepucci, M. Lipson, "Nanotaper for compact mode conversion," Opt. Lett. 28, 1302-1304 (2003). [CrossRef] [PubMed]
  15. S. Fathpour, K. Tsia, B. Jalali, "Energy harvesting in silicon Raman amplifiers," Appl. Phys. Lett. 89, 061109 (2006). [CrossRef]
  16. D. Taillaert,  et al. "An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers," IEEE J. Quantum Electron. 38, 949-955 (2002). [CrossRef]
  17. M. Casalino, L. Sirleto, L. Moretti, F. Della Corte, and I. Rendina, "Design of a silicon resonant cavity enhanced photodetector based on the internal photoemission effect at 1.55 μm," J. Opt. A., Pure Appl. Opt. 8, 909-913 (2006). [CrossRef]
  18. S. M. Sze, Physics of Semiconductor Devices (John Wiley & Sons, 1981).
  19. T. Baehr-Jones and M. Hochberg, Caltech, 1200 East California Blvd, Pasadena, California, 91125, USA are preparing a manuscript entitled "All optical modulation in a silicon waveguide based on a single photon process."
  20. D. Lide, CRC Handbook of Chemistry and Physics (CRC Press, 2006). T. Baehr-Jones, et al. "Analysis of the tuning sensitivity of silicon-on-insulator optical ring resonators," IEEE J. Lightwave Technol. 23, 4215-4221 (2005).
  21. Y. Liu, C. W. Chow, W. Y. Cheung, H. K. Tsang, "In-line channel power monitor based on helium ion implantation in silicon-on-insulator waveguides." IEEE Photon. Technol. Lett. 18, 1882-1884 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited