OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 3 — Feb. 4, 2008
  • pp: 1669–1685

Mueller-Stokes characterization and optimization of a liquid crystal on silicon display showing depolarization

A. Márquez, I. Moreno, C. Iemmi, A. Lizana, J. Campos, and M. J. Yzuel  »View Author Affiliations

Optics Express, Vol. 16, Issue 3, pp. 1669-1685 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (382 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper we characterize the polarimetric properties of a liquid crystal on silicon display (LCoS), including depolarization and diattenuation which are usually not considered when applying the LCoS in diffractive or adaptive optics. On one hand, we have found that the LCoS generates a certain degree (that can be larger than a 10%) of depolarized light, which depends on the addressed gray level and on the incident state of polarization (SOP), and can not be ignored in the above mentioned applications. The main origin of the depolarized light is related with temporal fluctuations of the SOP of the light reflected by the LCoS. The Mueller matrix of the LCoS is measured as a function of the gray level, which enables for a numerical optimization of the intensity modulation configurations. In particular we look for maximum intensity contrast modulation or for constant intensity modulation. By means of a heuristic approach we show that, using elliptically polarized light, amplitude-mostly or phase-mostly modulation can be obtained at a wavelength of 633 nm.

© 2008 Optical Society of America

OCIS Codes
(120.2040) Instrumentation, measurement, and metrology : Displays
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(230.3720) Optical devices : Liquid-crystal devices
(230.6120) Optical devices : Spatial light modulators

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: August 8, 2007
Revised Manuscript: October 18, 2007
Manuscript Accepted: October 18, 2007
Published: January 24, 2008

A. Márquez, I. Moreno, C. Iemmi, A. Lizana, J. Campos, and M. J. Yzuel, "Mueller-Stokes characterization and optimization of a liquid crystal on silicon display showing depolarization," Opt. Express 16, 1669-1685 (2008)

Sort:  Year  |  Journal  |  Reset  


  1. H.-K. Liu, J. A. Davis, and R. A. Lilly, "Optical-data-processing properties of a liquid-crystal television spatial light modulator," Opt. Lett. 10, 635-637 (1985). [CrossRef] [PubMed]
  2. H. J. Coufal, D. Psaltis, and B. T. Sincerbox, eds., Holographic Data Storage, (Springer-Verlag, Berlin, 2000).
  3. R. Dou and M. K. Giles, "Closed-loop adaptive optics system with a liquid crystal television as a phase retarder," Opt. Lett. 20, 1583-1585 (1995). [CrossRef] [PubMed]
  4. A. Márquez, C. Iemmi, J. Campos, J. C. Escalera, and M. J. Yzuel, "Programmable apodizer to compensate chromatic aberrations effects using a liquid crystal spatial light modulator," Opt. Express 13, 716-730 (2005). [CrossRef] [PubMed]
  5. R. Tudela, E. Martín-Badosa, I. Labastida, S. Vallmitjana, I. Juvells, and A. Carnicer, "Full complex Fresnel holograms displayed on liquid crystal devices," J. Opt. A, Pure Appl. Opt. 5, S189-S194 (2003). [CrossRef]
  6. W. Osten, C. Kohler, and J. Liesener, "Evaluation and application of spatial light modulators for optical metrology," Opt. Pura Apl. 38, 71-81 (2005).
  7. A. Márquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos, and M. J. Yzuel, "Quantitative prediction of the modulation behavior of twisted nematic liquid crystal displays based on a simple physical model," Opt. Eng. 40, 2558-2564 (2001). [CrossRef]
  8. J. Nicolás, J. Campos, and M. J. Yzuel, "Phase and amplitude modulation of elliptic polarization states by nonabsorbing anisotropic elements: application to liquid-crystal devices," J. Opt. Soc. Am. A 19, 1013-1020 (2002). [CrossRef]
  9. S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays, (John Wiley & Sons Inc., Chichester, 2005).
  10. Y. Lee, J. Gourlay, W. J. Hossack, I. Underwood, and A. J. Walton, "Multi-phase modulation for nematic liquid crystal on silicon backplane spatial light modulators using pulse-width modulation driving scheme," Opt. Commun. 236, 313-322 (2004). [CrossRef]
  11. J. Gourlay, P. McOwan, D. G. Vass, I. Underwood, and M. Worboys, "Time-multiplexed optical Hadamard image transforms with ferroelectric-liquid-crystal-over-silicon spatial light modulators," Opt. Lett. 18, 1745-1747 (1993). [CrossRef] [PubMed]
  12. Q. Mu, Z. Cao, L. Hu, D. Li, and L. Xuan, "Adaptive optics imaging system based on a high resolution liquid crystal on silicon device," Opt. Express 14, 8013-8018 (2006). [CrossRef] [PubMed]
  13. H. Dai, K. Xu, Y. Liu, X. Wang and J. Liu, "Characteristics of LCoS Phase-only spatial light modulator and its applications," Opt. Commun. 238, 269-276 (2004). [CrossRef]
  14. T. Ito, T. Shimobaba, H. Godo, and M. Horiuchi, "Holographic reconstruction with a 10-μm pixel-pitch reflective liquid-crystal display by use of a light-emitting diode reference light," Opt. Lett. 27, 1406-1408 (2002). [CrossRef]
  15. K. P. Proll, J. M. Nivet, K. Körner, and H. J. Tiziani, "Microscopic three-dimensional topometry with ferroelectric liquid-crystal-on-silicon displays," Appl. Opt. 42, 1773-1778 (2003). [CrossRef] [PubMed]
  16. J. Kacperski and M. Kujawinska, "Active, LCoS based laser interferometer for microelements studies," Opt. Express 14, 9664-9678 (2006). [CrossRef] [PubMed]
  17. K. Lu and B. E. A. Saleh, "Theory and design of the liquid crystal TV as an optical spatial phase modulator," Opt. Eng. 29, 240-246 (1990). [CrossRef]
  18. A. Márquez, J. Campos, M. J. Yzuel, I. Moreno, J. A. Davis, C. Iemmi, A. Moreno, and A. Robert, "Characterization of edge effects in twisted nematic liquid crystal displays," Opt. Eng. 39, 3301-3307 (2000). [CrossRef]
  19. Q. Wang and S. He, "A new effective model for the director distribution of a twisted nematic liquid crystal cell," J. Opt. A, Pure Appl. Opt. 7, 438-444 (2005). [CrossRef]
  20. I. Moreno, P. Velásquez, C. R. Fernández-Pousa, M. M. Sánchez-López, and F. Mateos, "Jones matrix method for predicting and optimizing the optical modulation properties of a liquid-crystal display," J. Appl. Phys. 94, 3697-3702 (2003). [CrossRef]
  21. V. Durán, J. Lancis, E. Tajahuerce, and Z. Jaroszewicz, "Equivalent retarder-rotator approach to on-state twisted nematic liquid crystal displays," J. Appl. Phys. 99, 113101-113106 (2006). [CrossRef]
  22. D. Goldstein, Polarized Light (Marcel Dekker, 2004).
  23. J. L. Pezzanitti and R. A. Chipman, "Phase-only modulation of a twisted nematic liquid-crystal TV by use of the eigenpolarization states," Opt. Lett. 18, 1567-1569 (1993). [CrossRef]
  24. J. A. Davis, I. Moreno and T. Tsai, "Polarization eigenstates for twisted-nematic liquid-crystal displays," Appl. Opt. 37, 937-945 (1998). [CrossRef]
  25. J. L. Pezzaniti, S. C. McClain, R. A. Chipman, and S.-Y. Lu, "Depolarization in liquid-crystal televisions," Opt. Lett. 18, 2071-2073 (1993). [CrossRef] [PubMed]
  26. J. E. Wolfe and R. A. Chipman, "Polarimetric characterization of liquid-crystal-on-silicon panels," Appl.Opt. 45, 1688-1703 (2006). [CrossRef] [PubMed]
  27. "IEC 61947-1:2002. Electronic Projection. Measurement and documentation of key performance criteria. Part 1: Fixed resolution projectors," IEC (International Electrotechnical Commission), Geneva, 2002.
  28. J. Campos, I. Moreno, A. Márquez, C. Iemmi, V. Mariscal, J. A. Davis, and M. J. Yzuel, "Simple Jones method for describing modulation properties of reflective liquid crystal spatial light modulators," in CP860. Information Optics: 5th International Workshop, G. Cristóbal, B. Javidi, and S. Vallmitjana, eds. (AIP, 2006), pp. 159-168.
  29. S.-Y. Lu and R. A. Chipman, "Interpretation of Mueller matrices based on polar decomposition," J. Opt. Soc. Am. A 13, 1106-1113 (1996). [CrossRef]
  30. S.-Y. Lu and R. A. Chipman, "Homogeneous and inhomogeneous Jones matrices," J. Opt. Soc. Am. A 11, 766-773 (1994). [CrossRef]
  31. S. Stallinga, "Equivalent retarder approach to reflective liquid crystal displays," J. Appl. Phys. 86, 4756-4766 (1999) [CrossRef]
  32. A. Márquez, I. Moreno, J. Campos and M. J. Yzuel, "Analysis of Fabry-Perot interference effects on the modulation properties of liquid crystal displays," Opt. Commun. 265, 84-94 (2006). [CrossRef]
  33. A. Bergeron, J. Gauvin, F. Gagnon, D. Gingras, H. H. Arsenault, and M. Doucet, "Phase calibration and applications of a liquid-crystal spatial light modulator," Appl. Opt. 34, 5133-5139 (1995). [CrossRef] [PubMed]
  34. D. Engström, G. Milewski, J. Bengtsson, and S. Galt, "Diffraction-based determination of the phase modulation for general spatial light modulators," Appl. Opt. 45, 7195-7204 (2006). [CrossRef] [PubMed]
  35. I. Moreno, J. Campos, C. Gorecki, and M. J. Yzuel, "Effects of amplitude and phase mismatching errors in the generation of a kinoform for pattern recognition," Jpn. J. Appl. Phys. 34, 6423-6434 (1995). [CrossRef]
  36. I. Moreno, C. Iemmi, A. Márquez, J. Campos, and M. J. Yzuel, "Modulation light efficiency of diffractive lenses displayed onto a restricted phase-mostly modulation display," Appl. Opt. 43, 6278-6284 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (4085 KB)     
» Media 2: MOV (2102 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited