OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 3 — Feb. 4, 2008
  • pp: 1711–1718

Improved image quality of a Ag slab near-field superlens with intrinsic loss of absorption

Kwangchil Lee, Haesung Park, Jaehoon Kim, Gumin Kang, and Kyoungsik Kim  »View Author Affiliations


Optics Express, Vol. 16, Issue 3, pp. 1711-1718 (2008)
http://dx.doi.org/10.1364/OE.16.001711


View Full Text Article

Enhanced HTML    Acrobat PDF (144 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Intrinsic loss of absorption in the Ag slab near-field superlens turned out to add a blurring effect to the ideal image reconstruction for the impedance match case. By optimizing the real part of the permittivity (ε′) of Ag, our FDTD calculation predicts ~69% enhancement of visibility and ~138% increased depth of field for the intensity contrast of 0.5 with similar focal spot size. For a near-field superlens with the higher absorption loss, the optimized image quality is obtained with a larger impedance mismatch, which can be realized by changing the wavelength of incident light for imaging.

© 2008 Optical Society of America

OCIS Codes
(120.5710) Instrumentation, measurement, and metrology : Refraction
(160.4670) Materials : Optical materials
(350.3618) Other areas of optics : Left-handed materials

ToC Category:
Imaging Systems

History
Original Manuscript: November 1, 2007
Revised Manuscript: January 20, 2008
Manuscript Accepted: January 21, 2008
Published: January 24, 2008

Citation
Kwangchil Lee, Haesung Park, Jaehoon Kim, Gumin Kang, and Kyoungsik Kim, "Improved image quality of a Ag slab near-field superlens with intrinsic loss of absorption," Opt. Express 16, 1711-1718 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-3-1711


Sort:  Year  |  Journal  |  Reset  

References

  1. V. G. Veselago, "Electrodynamics of substances with simultaneously negative electrical and magnetic permeabilities," Sov. Phys. Usp. 10, 509-514 (1968). [CrossRef]
  2. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000). [CrossRef] [PubMed]
  3. V. M. Shalaev, W. Cai, U. K. Chettiar, H. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, "Negative index of refraction in optical metamaterials," Opt. Lett. 30, 3356 (2005). [CrossRef]
  4. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494 - 1496 (2004). [CrossRef] [PubMed]
  5. M. Wiltshire, J. Hajnal, J. B. Pendry, D. Edwards, and C. Stevens, "Metamaterial endoscope for magnetic field transfer: near field imaging with magnetic wires," Opt. Express 11, 709-715 (2003). [CrossRef] [PubMed]
  6. S. Foteinopoulou, E. N. Economou, and C. M. Soukoulis, "Refraction in media with a negative refractive index," Phys. Rev. Lett. 90, 107402 (2003). [CrossRef] [PubMed]
  7. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  8. R. J. Blaikie and S. J. McNab, "Simulation study of ‘perfect lenses’ for near-field optical nanolithography," Microelectron. Eng. 61-62, 97-103 (2002).
  9. N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005). [CrossRef] [PubMed]
  10. R. J. Blaikie, D. O. S. Melville, and M. M. Alkaisi, "Super-resolution near field lithography using planar silver lenses," Microelectron. Eng. 83, 723-729 (2006). [CrossRef]
  11. W. Cai, D. A. Genov, and V. M. Shalaev, "Superlens based on metal-dielectric composites," Phys. Rev. B 72, 193101 (2005). [CrossRef]
  12. P. B. Johnson and R. W. Christy, "Optical-constants of noble-metals," Phys. Rev. B 6, 4370-4379(1972).
  13. K. S. Kunz and R. J. Luebbers, Finite difference time domain method for electromagnetic, (CRC Press, Boca Raton, 1993).
  14. M. M. Alkaisi, R. J. Blaikie, and S. J. McNab, "Nanolithography in the evanescent near field," Adv. Mater. 13, 877-887 (2001). [CrossRef]
  15. A. L. Pokrovsky and A. L. Efros, "Lens based on the use of left handed materials," Appl. Opt. 42, 5701-5705 (2003). [CrossRef] [PubMed]
  16. V. A. Podolskiy and E. E. Narimanov, "Near-sighted superlens," Opt. Lett. 30, 75 (2005). [CrossRef] [PubMed]
  17. G. D’Aguanno, N. Mattiucci, and M. Bloemer, "Influence of the losses on the super-resolution performances of an impedance matched negative index material," J. Opt. Soc. Am B, in press.
  18. K. Mizuuchi, K. Yamamoto, and M. Kato, "Generation of ultraviolet light by frequency doubling of a red laser diode in a first-order periodically poled bulk LiTaO3," Appl. Phys. Lett. 70, 1201-1203 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited