OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 3 — Feb. 4, 2008
  • pp: 1733–1741

Polarization-selective mapping of near-field intensity and phase around gold nanoparticles using apertureless near-field microscopy

Zee Hwan Kim and Stephen R. Leone  »View Author Affiliations

Optics Express, Vol. 16, Issue 3, pp. 1733-1741 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (460 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Enhanced near-field distributions around a single gold nanosphere are imaged using scattering-type apertureless near field scanning optical microscopy (ANSOM) at a wavelength of 632.8 nm. For the first time, polarization-selected ANSOM images are obtained that show both the transverse (perpendicular to the tip axis) and the longitudinal (parallel to the tip axis) vector components of the near-field in a phase sensitive manner. A model calculation using a Green’s dyadic propagator method successfully reproduces the features of the observed intensity and phase images, providing an interpretation of the ANSOM images. The results open up the possibility that the field vector directions as well as the field magnitude around plasmonic nanostructures and nanodevices can be directly mapped using the ANSOM technique.

© 2008 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(180.4243) Microscopy : Near-field microscopy

ToC Category:

Original Manuscript: November 6, 2007
Revised Manuscript: December 13, 2007
Manuscript Accepted: January 4, 2008
Published: January 24, 2008

Virtual Issues
Vol. 3, Iss. 3 Virtual Journal for Biomedical Optics

Zee Hwan Kim and Stephen R. Leone, "Polarization-selective mapping of near-field intensity and phase around gold nanoparticles using apertureless near-field microscopy," Opt. Express 16, 1733-1741 (2008)

Sort:  Year  |  Journal  |  Reset  


  1. H. Raether, Surface Plasmons (Springer-Verlag, Berlin, 1986).
  2. K. Kneipp, H. Kneipp, and J. J. Kneipp, "Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregatess - From single-molecule Raman spectroscopy to ultrasensitive probing in live cells," Acc. Chem. Res. 39, 443-450 (2006). [CrossRef] [PubMed]
  3. K. A. Willets and R. P. van Duyne, "Localized surface plasmon resonance spectroscopy and sensing," Ann. Rev. Phys. Chem. 58, 267-297 (2006). [CrossRef]
  4. H. L. Offerhaus, B. van den Bergen, M. Escalante, F. B. Segerink, J. P. Korterik, and N. F. van Hulst, "Creating focused plasmons by noncollinear phasematching on functional gratings," Nano Lett. 5, 2144-2148 (2005). [CrossRef] [PubMed]
  5. R. Hillenbrand, F. Keilmann, P. Hanarp, and D. S. Sutherland, "Coherent imaging of nanoscale plasmon patterns with a carbon nanotube optical probe," Appl. Phys. Lett. 83, 368-370 (2003). [CrossRef]
  6. R. Hillenbrand and F. Keilmann, "Optical oscillation modes of plasmon particles observed in direct space by phase-contrast near-field microscopy," Appl. Phys. B 73, 239-243 (2001). [CrossRef]
  7. A. Huber, N. Ocelic, D. Kazantsev, and R. Hillenbrand, "Near-field imaging of mid-infrared surface phonon polariton propagation," Appl. Phys. Lett. 87, 081103 (2005). [CrossRef]
  8. T. Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Käll, R. Hillenbrand, J. Aizpurua, and F. J. G. de Abajo, "Nanohole plasmons in optically thin gold films," J. Phys. Chem. C 111, 1207-1212 (2007). [CrossRef]
  9. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, Cambridge, 2006).
  10. Z. H. Kim and S. R. Leone, "High-resolution apertureless near-field optical imaging using gold nanosphere probes," J. Phys. Chem. B 110, 19804-19809 (2006). [CrossRef] [PubMed]
  11. Z. H. Kim, B. Liu, and S. R. Leone, "Nanometer-scale optical imaging of epitaxially grown GaN and InN islands using apertureless near-field microscopy," J. Phys. Chem. B 109, 8503-8508 (2005). [CrossRef]
  12. L. Aigouy, A. Lahrech, S. Gresillon, H. Cory, A. C. Boccara, and J. C. Rivoal, " Polarization effects in apertureless scanning near-field optical microscopy: an experimental study," Opt. Lett. 24, 187-189 (1999). [CrossRef]
  13. A. Hartschuh, E. J. Sanchez, X. S. Xie, and L. Novotny, "High-resolution near-field Raman microscopy of single-walled carbon nanotubes," Phys. Rev. Lett. 90, 0955034 (2003). [CrossRef]
  14. Z. H. Kim and S. R. Leone, " Nanometer-scale dielectric imaging of semiconductor nanoparticles: Size-dependent dipolar coupling and contrast reversal," Nano Lett. 7, 2258-2262 (2007). [CrossRef] [PubMed]
  15. L. Stebounova, B. B. Akhremitchev, and G. C. Walker, "Enhancement of the weak scattered signal in apertureless near-field scanning infrared microscopy," Rev. Sci. Instrum. 74, 3670-3674 (2003). [CrossRef]
  16. K. G. Lee, H. W. Kihm, K. J. Ahn, J. S. Ahn, Y. D. Suh, C. Lienau, and D. S. Kim, "Vector field mapping of local polarization using gold nanoparticle functionalized tips: independence of the tip shape," Opt. Express 15, 14993-15001 (2006). [CrossRef]
  17. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, "Longitudinal field modes probed by single molecules," Phys. Rev. Lett. 86, 5251-5254 (2001). [CrossRef] [PubMed]
  18. D. Haefliger, J. M. Plitzko, and R. Hillenbrand, "Contrast and scattering efficiency of scattering-type near-field optical probes," Appl. Phys. Lett. 85, 4466-4468 (2004). [CrossRef]
  19. S. Kuhn, U. Hakanson, L. Rogobete, and V. Sandoghdar, "Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna," Phys. Rev. Lett. 97, 017402 (2006). [CrossRef] [PubMed]
  20. K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, "Vector field microscopic imaging of light," Nat. Photonics 1, 53-56 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited