OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 3 — Feb. 4, 2008
  • pp: 1748–1757

Volumetric sub-surface imaging using spectrally encoded endoscopy

D. Yelin, B. E. Bouma, and G. J. Tearney  »View Author Affiliations


Optics Express, Vol. 16, Issue 3, pp. 1748-1757 (2008)
http://dx.doi.org/10.1364/OE.16.001748


View Full Text Article

Enhanced HTML    Acrobat PDF (746 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Endoscopic imaging below tissue surfaces and through turbid media may provide improved diagnostic capabilities and visibility in surgical settings. Spectrally encoded endoscopy (SEE) is a recently developed method that utilizes a single optical fiber, miniature optics and a diffractive grating for high-speed imaging through small diameter, flexible endoscopic probes. SEE has also been shown to provide three-dimensional topological imaging capabilities. In this paper, we have configured SEE to additionally image beneath tissue surfaces, by increasing the system’s sensitivity and acquiring the complex spectral density for each spectrally resolved point on the sample. In order to demonstrate the capability of SEE to obtain subsurface information, we have utilized the system to image a resolution target through intralipid solution, and conduct volumetric imaging of a mouse embryo and excised human middle-ear ossicles. Our results demonstrate that real-time subsurface imaging is possible with this miniature endoscopy technique.

© 2008 Optical Society of America

OCIS Codes
(110.1650) Imaging systems : Coherence imaging
(170.2150) Medical optics and biotechnology : Endoscopic imaging
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(170.6900) Medical optics and biotechnology : Three-dimensional microscopy

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: October 10, 2007
Revised Manuscript: November 21, 2007
Manuscript Accepted: December 14, 2007
Published: January 25, 2008

Virtual Issues
Vol. 3, Iss. 3 Virtual Journal for Biomedical Optics

Citation
D. Yelin, B. E. Bouma, and G. J. Tearney, "Volumetric sub-surface imaging using spectrally encoded endoscopy," Opt. Express 16, 1748-1757 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-3-1748


Sort:  Year  |  Journal  |  Reset  

References

  1. E. Montgomery, M. P. Bronner, J. R. Goldblum, J. K. Greenson, M. M. Haber, J. Hart, L. W. Lamps, G. Y. Lauwers, A. J. Lazenby, D. N. Lewin, M. E. Robert, A. Y. Toledano, Y. Shyr, and K. Washington, "Reproducibility of the diagnosis of dysplasia in Barrett esophagus: A reaffirmation," Hum. Pathol. 32, 368-378 (2001). [CrossRef] [PubMed]
  2. C. Klug, B. Fabinyi, and M. Tschabitscher, "Endoscopy of the middle ear through the Eustachian tube: Anatomic possibilities and limitations," Am. J. Otol. 20, 299-303 (1999). [PubMed]
  3. M. A. D'Hallewin, S. El Khatib, A. Leroux, L. Bezdetnaya, and F. Guillemin, "Endoscopic confocal fluorescence microscopy of normal and tumor bearing rat bladder," J. Urol. 174, 736-740 (2005). [CrossRef] [PubMed]
  4. A. F. Gmitro, and D. Aziz, "Confocal Microscopy through a fiberoptic imaging bundle," Opt. Lett. 18, 565-567 (1993). [CrossRef] [PubMed]
  5. C. Liang, K. B. Sung, R. R. Richards-Kortum, and M. R. Descour, "Design of a high-numerical-aperture miniature microscope objective for an endoscopic fiber confocal reflectance microscope," Appl. Opt. 41, 4603-4610 (2002). [CrossRef] [PubMed]
  6. A. L. Polglase, W. J. McLaren, S. A. Skinner, R. Kiesslich, M. F. Neurath, and P. M. Delaney, "A fluorescence confocal endomicroscope for in vivo microscopy of the upper- and the lower-GI tract," Gastrointest. Endosc. 62, 686-695 (2005). [CrossRef] [PubMed]
  7. G. J. Tearney, M. Shishkov, and B. E. Bouma, "Spectrally encoded miniature endoscopy," Opt. Lett. 27, 412-414 (2002). [CrossRef]
  8. T. D. Wang, M. J. Mandella, C. H. Contag, and G. S. Kino, "Dual-axis confocal microscope for high-resolution in vivo imaging," Opt. Lett. 28, 414-416 (2003). [CrossRef] [PubMed]
  9. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  10. Q1. G. J. Tearney, S. A. Boppart, B. E. Bouma, M. E. Brezinski, N. J. Weissman, J. F. Southern, and J. G. Fujimoto, "Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography (vol 21, pg 543, 1996)," Opt. Lett. 21, 912-912 (1996). [CrossRef] [PubMed]
  11. A. D. Aguirre, P. R. Herz, Y. Chen, J. G. Fujimoto, W. Piyawattanametha, L. Fan, and M. C. Wu, "Two-axis MEMS scanning catheter for ultrahigh resolution three-dimensional and en face imaging," Opt. Express 15, 2445-2453 (2007). [CrossRef] [PubMed]
  12. S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I. K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, "Comprehensive volumetric optical microscopy in vivo," Nat. Med. 12, 1429-1433 (2006). [CrossRef] [PubMed]
  13. Q2. D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, "Three-dimensional miniature endoscopy," Nature 443, 765-765 (2006). [CrossRef] [PubMed]
  14. D. Yelin, S. H. Yun, B. E. Bouma, and G. J. Tearney, "Three-dimensional imaging using spectral encoding heterodyne interferometry," Opt. Lett. 30, 1794-1796 (2005). [CrossRef] [PubMed]
  15. D. Yelin, W. M. White, J. T. Motz, S. H. Yun, B. E. Bouma, and G. J. Tearney, "Spectral-domain spectrally-encoded endoscopy," Opt. Express 15, 2432-2444 (2007). [CrossRef] [PubMed]
  16. R. A. Leitgeb, C. K. Hitzenberger, A. F. Fercher, and T. Bajraszewski, "Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography," Opt. Lett. 28, 2201-2203 (2003). [CrossRef] [PubMed]
  17. J. T. Oh, and B. M. Kim, "Artifact removal in complex frequency domain optical coherence tomography with an iterative least-squares phase-shifting algorithm," Appl. Opt. 45, 4157-4164 (2006). [CrossRef] [PubMed]
  18. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, "Full range complex spectral optical coherence tomography technique in eye imaging," Opt. Lett. 27, 1415-1417 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: AVI (5915 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited