OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 3 — Feb. 4, 2008
  • pp: 1758–1763

TEM-like optical mode of a coaxial nanowaveguide

Y. Peng, X. Wang, and K. Kempa  »View Author Affiliations

Optics Express, Vol. 16, Issue 3, pp. 1758-1763 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (168 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study propagation of electromagnetic waves in a nano-coaxial waveguide for frequencies around and below the surface plasmon frequency. We show, that for frequencies sufficiently lower than the surface plasmon frequency, the waveguide supports a plasmon polariton mode that resembles, and indeed reduces to the conventional TEM mode of the conventional coaxial transmission line, known in the radiotechnology.

© 2008 Optical Society of America

OCIS Codes
(240.5420) Optics at surfaces : Polaritons
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

Original Manuscript: October 10, 2007
Revised Manuscript: November 12, 2007
Manuscript Accepted: November 13, 2007
Published: January 25, 2008

Y. Peng, X. Wang, and K. Kempa, "TEM-like optical mode of a coaxial nanowaveguide," Opt. Express 16, 1758-1763 (2008)

Sort:  Year  |  Journal  |  Reset  


  1. J. Rybczynski, K. Kempa, A. Herczynski, Y. Wang, M. J. Naughton, and Z. F. Ren, Z. P. Huang, D. Cai, M. Giersig, "Subwavelength waveguide for visible light," Appl. Phys. Lett. 90, 021104 (2007). [CrossRef]
  2. D. M. Pozar, Microwave Engineering, 3rd edition, (John Wiley & Sons, Inc. 2005).
  3. "Neuerung in dem Verfahren zur Herstellung isolirter Leitungen," (Siemens & Halske, Berlin), Kaiserliches Patentamt, Patentschrift Nummer 28978, Berlin, September 3, 1884.
  4. M. S. Kushwaha1 and B. Djafari-Rouhani, "Green-function theory of confined plasmons in coaxial cylindrical geometries: Zero magnetic field," Phys. Rev. B 67, 245320 (2003). [CrossRef]
  5. M. S. Kushwaha1 and B. Djafari-Rouhani, "Plasma excitations in multicoaxial cables," Phys. Rev. B 71, 153316 (2005). [CrossRef]
  6. S. Ancey, Y. Décanini, A. Folacci, and P. Gabrielli1, "Surface polaritons on metallic and semiconducting cylinders: A complex angular momentum analysis," Phys. Rev. B 70, 245406 (2004). [CrossRef]
  7. F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, "Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes," Phys. Rev. B 74, 205419 (2006). [CrossRef]
  8. N. Garcia and Ming Bai, "Theory of transmission of light by sub-wavelength cylindrical holes in metallic films," Opt. Express 14, 10028 (2006). [CrossRef] [PubMed]
  9. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, "Guiding of a one-dimensional optical beam with nanometer diameter," Opt. Lett. 22, 475 (1997). [CrossRef] [PubMed]
  10. X. Wang and K. Kempa, "Plasmon polaritons in slot waveguides: Simple model calculations and a full nonlocal quantum mechanical treatment," Phys. Rev. B 75, 245426 (2007). [CrossRef]
  11. X. Wang and K. Kempa, "Negative refraction and subwavelength lensing in a polaritonic crystal," Phys. Rev. B 71, 233101 (2005). [CrossRef]
  12. K. Kempa, X. Wang, Z. F. Ren and M. J. Naughton, to be published

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited