OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 3 — Feb. 4, 2008
  • pp: 1885–1902

Confinement loss evaluation based on a multilayer division method in Bragg fibers

Jun-ichi Sakai and Hideaki Niiro  »View Author Affiliations

Optics Express, Vol. 16, Issue 3, pp. 1885-1902 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (434 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Confinement loss is comprehensively evaluated for TE, TM, and hybrid modes of Bragg fibers using a multilayer division method newly developed. We show the loss dependence on the core radius, wavelength, cladding index contrast, and the number of cladding pairs. The confinement loss is reduced in proportion to (a/b)2N and (n2 b b/n2 a a)2N for the TE and other three modes, respectively, with respect to cladding pairs N under the quarter-wave stack condition, with cladding high na and low indices nb and their corresponding thicknesses a and b. For sufficiently large core radius, the confinement loss decreases in inverse proportion to the third and first powers of core radius for the TE and other three modes, respectively. Low loss modes are the TE01, TE02, HE13, and TE03 modes in order of increasing confinement loss.

© 2008 Optical Society of America

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2400) Fiber optics and optical communications : Fiber properties

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: November 2, 2007
Revised Manuscript: December 21, 2007
Manuscript Accepted: January 9, 2008
Published: January 28, 2008

Jun-Ichi Sakai and Hideaki Niiro, "Confinement loss evaluation based on a multilayer division method in Bragg fibers," Opt. Express 16, 1885-1902 (2008)

Sort:  Year  |  Journal  |  Reset  


  1. T. P. White, R. C. McPhedran, C. M. de Sterke, L. C. Botten, and M. J. Steel, "Confinement losses in microstructured optical fibers," Opt.Lett. 26, 1660-1662 (2001). [CrossRef]
  2. S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, "Low-loss asymptotically single-mode propagation in large-core Omniguide fibers," Opt. Express,  9, 748-779 (2001), http://www.opticsexpress.org/abstract.cfm?URI=oe-9-13-748 [CrossRef] [PubMed]
  3. I. M. Bassett and A. Argyros, "Elimination of polarization degeneracy in round waveguide," Opt. Express,  10, 1342-1346 (2002), http://www.opticsexpress.org/abstract.cfm?URI=oe-10-23-1342. [PubMed]
  4. A. Argyros, "Guided modes and loss in Bragg fibers, "Opt. Express,  10, 1411-1417 (2002), http://www.opticsexpress.org/abstract.cfm?URI=oe-10-24-1411. [PubMed]
  5. Y. Xu, A. Yariv, J. G. Fleming, and S. Y. Lin, "Asymptotic analysis of silicon based Bragg fibers," Opt. Express,  11, 1039-1049 (2003), http://www.opticsexpress.org/abstract.cfm?URI=oe-11-9-1039 [CrossRef] [PubMed]
  6. W. Zhi, R. Guobin, L. Shuqin, L. Weijun and S. Guo, "Compact supercell method based on opposite parity for Bragg fibers," Opt. Express,  11, 3542-3549 (2003), http://www.opticsexpress.org/abstract.cfm?URI=oe-11-26-3542. [CrossRef] [PubMed]
  7. J. A. Monsoriu, E. Silvestre, A. Ferrando, P. Andrés and J. J. Miret, "Highindex-core Bragg fibers: dispersion properties," Opt. Express,  11, 1400-1405 (2003), http://www.opticsexpress.org/abstract.cfm?URI=oe-11-12-1400. [CrossRef] [PubMed]
  8. T. P. Horikis and W. L. Kath, "Modal analysis of circular Bragg fibers with arbitrary index profiles," Opt. Lett. 31, 3417-3419 (2006). [CrossRef] [PubMed]
  9. J. G. Dil and H. Blok, "Propagation of electromagnetic surface waves in a radially inhomogeneous optical waveguide," Opto-Electronics,  5415-428 (1973). [CrossRef]
  10. J. Sakai and T. Kimura, "Bending loss of propagation modes in arbitrary-index profile optical fibers," Appl. Opt. 181499-1506 (1987).
  11. E. Snitzer, "Cylindrical dielectric waveguide modes," J. Opt. Soc. Am. 51, 491-498 (1961). [CrossRef]
  12. Y. Xu, G. X. Ouyang, R. K. Lee and A. Yariv, "Asymptotic matrix theory of Bragg fibers," J. Lightwave Technol. 20, 428-440 (2002). [CrossRef]
  13. J. Sakai, "Hybrid modes in a Bragg fiber: general properties and formulas under the quarter-wave stack condition," J. Opt. Soc. Am. B,  22, 2319-2330 (2005). [CrossRef]
  14. J. Sakai, "Optical power confinement factor in a Bragg fiber: 1. Formulation and general properties," J. Opt. Soc. Am. B,  24, 9-19 (2007). [CrossRef]
  15. J. Sakai, J. Sasaki, and K. Kawai, "Optical power confinement factor in a Bragg fiber: 2. Numerical results," J. Opt. Soc. Am. B,  24, 20-27 (2007). [CrossRef]
  16. J. Sakai, "Optical loss estimation in a Bragg fiber," J. Opt. Soc. Am. B,  24, 763-772 (2007). [CrossRef]
  17. M. Yan and P. Shum, "Analysis of perturbed Bragg fibers with an extended transfer matrix method," Opt. Express,  14, 2596-2610 (2006), http://www.opticsexpress.org/abstract.cfm?URI=oe-14-7-2596. [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited