OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 3 — Feb. 4, 2008
  • pp: 2080–2090

Resonances in complementary metamaterials and nanoapertures

Carsten Rockstuhl, Thomas Zentgraf, Todd P. Meyrath, Harald Giessen, and Falk Lederer  »View Author Affiliations


Optics Express, Vol. 16, Issue 3, pp. 2080-2090 (2008)
http://dx.doi.org/10.1364/OE.16.002080


View Full Text Article

Enhanced HTML    Acrobat PDF (492 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We theoretically analyze the properties of metamaterials which have been designed by taking advantage of Babinet’s principle. It is shown that the complementary structure exhibits both a complementary spectral response and field distribution of the respective eigenmodes. For complementary split-ring resonators, we show that the spectral resonance features can be explained from two different perspectives. On one hand they can be explained as plasmon polariton resonances in dielectric nanostructures surrounded by metal, on the other hand they can be understood as guided mode resonances with vanishing propagation constant. The physical origin of these modes and differences to the conventional split-ring geometry are discussed.

© 2008 Optical Society of America

OCIS Codes
(160.4670) Materials : Optical materials
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics
(260.5740) Physical optics : Resonance

ToC Category:
Metamaterials

History
Original Manuscript: December 14, 2007
Revised Manuscript: January 18, 2008
Manuscript Accepted: January 22, 2008
Published: January 30, 2008

Citation
Carsten Rockstuhl, Thomas Zentgraf, Todd P. Meyrath, Harald Giessen, and Falk Lederer, "Resonances in complementary metamaterials and nanoapertures," Opt. Express 16, 2080-2090 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-3-2080


Sort:  Year  |  Journal  |  Reset  

References

  1. V. M. Shalaev, "Optical negative-index metamaterials," Nature Photonics 1,41-48 (2007). [CrossRef]
  2. C. M. Soukoulis, S. Linden, and M. Wegener, "Negative refractive index at optical wavelengths," Science 315,47-49 (2007). [CrossRef] [PubMed]
  3. J. D. JoannopoulosPhotonic crystals: Molding the flow of light (Princeton University Press, Princeton, New Jersey, 1995).
  4. D. R. Smith, S. Schultz, P. Marko¡s, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B 65,195104 (2002). [CrossRef]
  5. D. Seetharamdoo, R. Sauleau, K. Mahdjoubi, and Anne-Claude Tarot, "Effective parameters of resonant negative refractive index metamaterials: Interpretation and validity," J. Appl. Phys. 98,063505 (2005). [CrossRef]
  6. C. Rockstuhl, T. Paul, F. Lederer, T. Pertsch, T. Zentgraf, T. P. Meyrath, and H. Giessen, "Investigating the transition from thin film to bulk properties of metamaterials" Phys. Rev. B 77,035126 (2008). [CrossRef]
  7. T. C. Choy, Effective Medium Theory, Principles and Applications, (Oxford University Press, 1999).
  8. R. D. Grober, R. J. Schoelkopf, and D. E. Prober, "Optical antenna: Towards a unity efficiency near-field optical probe," Appl. Phys. Lett. 70,1354-1356 (1997). [CrossRef]
  9. L. Lewin, "The electrical constants of a material loaded with spherical particles," Proc. Inst. Elec. Eng., Part 3,  94,65-68 (1947).
  10. C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, " Design of an Artificial Three-Dimensional Composite Metamaterial with Magnetic Resonances in the Visible Range of the Electromagnetic Spectrum," Phys. Rev. Lett. 99,017401 (2007). [CrossRef] [PubMed]
  11. J. P. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors, and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47,2075-2084 (1999). [CrossRef]
  12. F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, "Babinet principle applied to the design of metasurfaces and metamaterials," Phys. Rev. Lett. 93,197401 (2004). [CrossRef] [PubMed]
  13. H.-T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, "Complementary planar terahertz metamaterials," Opt. Express 15,1084-1095 (2007). [CrossRef] [PubMed]
  14. M. Born and E. Wolf, Principles of optics (Cambridge University Press, Cambridge, 1999).
  15. R. Ullrich, "Far-infrared properties of metallic mesh and its complementary structure," Infrared Phys. 7,37-55 (1967). [CrossRef]
  16. L. C. Botton, R. C. McPhedran, and G. W. Milton, "Perfectly conducting lamellar gratings: Babinet’s principle and circuit models," J. Mod. Opt. 42,2453-2473 (1995). [CrossRef]
  17. T. Zentgraf, C. Rockstuhl, T. P. Meyrath, A. Seidel, S. Kaiser, F. Lederer, and H. Giessen, "Babinet’s principle for optical frequency metamaterials and nanoantennas," Phys. Rev. B 76,033407 (2007). [CrossRef]
  18. C. Rockstuhl and F. Lederer, "Negative-index metamaterials from nanoapertures," Phys. Rev. B 76,125426 (2007). [CrossRef]
  19. J. A. Porto, F. J. Garca-Vidal, and J. B. Pendry, "Transmission Resonances on Metallic Gratings with Very Narrow Slits," Phys. Rev. Lett. 83,2845-2848 (1999). [CrossRef]
  20. X. Shi, L. Hesselink, and R. L. Thornton, "Ultrahigh light transmission through a C-shaped nanoaperture," Opt. Lett. 28,1320-1322 (2003). [CrossRef] [PubMed]
  21. C. Rockstuhl, F. Lederer, T. Zentgraf, and H. Giessen, "Enhanced transmission of periodic, quasi-periodic, and random nanoaperture arrays," Appl. Phys. Lett. 91,151109 (2007). [CrossRef]
  22. F. J. García de Abajo, R. G’omez-Medina, and J. J. S’aenz, "Full transmission through perfect-conductor subwavelength hole arrays," Phys. Rev. E 72,016608 (2005). [CrossRef]
  23. F. J. García de Abajo, "Light scattering by particle and hole arrays," Rev. Mod. Phys. 79,1267-1290 (2007). [CrossRef]
  24. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6,4370-4379 (1972). [CrossRef]
  25. D. H. Dawes, R. C. McPhedran, and L. B. Whitbourn, "Thin capacitive meshes on a dielectric boundary: theory and experiment," Appl. Opt. 26,3498-3510 (1989). [CrossRef]
  26. L. Li, "New formulation of the Fourier modal method for crossed surface-relief gratings," J. Opt. Soc. Am. A 14,2758-2767 (1997). [CrossRef]
  27. C. Rockstuhl, T. Zentgraf, C. Etrich, J. Kuhl, F. Lederer, and H. Giessen, "On the reinterpretation of resonances in split-ring-resonators at normal incidence," Opt. Express 14,8827-8836 (2006). [CrossRef] [PubMed]
  28. C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, "Resonances of split-ring resonator metamaterials in the near infrared," Appl. Phys. B. 84,219-227 (2006). [CrossRef]
  29. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. Burr, "Improving accuracy by subpixel smoothing in the finite-difference time domain," Opt. Lett. 31,2972-2974 (2006). [CrossRef] [PubMed]
  30. C. Rockstuhl, T. Zentgraf, E. Pshenay-Severin, J. Petschulat, A. Chipouline, J. Kuhl, H. Giessen, T. Pertsch, and F. Lederer, "The origin of magnetic polarizability in metamaterials at optical frequencies - an electrodynamic approach," Opt. Express 15,8871-8883 (2007). [CrossRef] [PubMed]
  31. Z. Zhu and T. Brown, "Full-vectorial finite-difference analysis of microstructured optical fibers," Opt. Express 10,853-864 (2002). [PubMed]
  32. V. V. Varadan and A. R. Tellakula, "Effective properties of split-ring resonator metamaterials using measured scattering parameters: Effect of gap orientation," J. Appl. Phys. 100,034910 (2006). [CrossRef]
  33. M. Kafesaki, T. Koschny, R. S. Penciu, T. F. Gundogdu, E. N. Economou, and C. M. Soukoulis, "Left-handed metamaterials: detailed numerical studies of the transmission properties," J. Opt. A: Pure Appl. Opt. 7,S12-S22 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited