OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 3 — Feb. 4, 2008
  • pp: 2091–2108

Noise reduction in a laser polarimeter based on discrete waveplate rotations

Israel J. Vaughn and Brian G. Hoover  »View Author Affiliations

Optics Express, Vol. 16, Issue 3, pp. 2091-2108 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (573 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



While several analyses of polarimeter noise-reduction have been published, little data has been presented to support the analytical results, particularly for a laser polarimeter based on measurements taken at discrete, independent rotation angles of two birefringent waveplates. This paper derives and experimentally demonstrates the reduction of both system and speckle noise in this type of laser polarimeter, achieved by optimizing the rotation angles of the waveplates by minimizing the condition numbers of the appropriate matrix equation. Results are demonstrated experimentally in signal-to-noise ratio (SNR) variations for a range of materials and spatial bandwidths. Use of optimal waveplate angles is found to improve the average SNR of the normalized Mueller matrix over speckle by a factor of up to 8 for a non-depolarizing material, but to provide little improvement for a depolarizing material. In the limit of zero spatial bandwidth, the average SNR of the normalized Mueller matrix over speckle is found to be greater than one for a non-depolarizing material and less than one for a depolarizing material.

© 2008 Optical Society of America

OCIS Codes
(030.6140) Coherence and statistical optics : Speckle
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(120.5410) Instrumentation, measurement, and metrology : Polarimetry

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: December 17, 2007
Revised Manuscript: January 16, 2008
Manuscript Accepted: January 17, 2008
Published: January 30, 2008

Israel J. Vaughn and Brian G. Hoover, "Noise reduction in a laser polarimeter based on discrete waveplate rotations," Opt. Express 16, 2091-2108 (2008)

Sort:  Year  |  Journal  |  Reset  


  1. D. B. Chenault, J. L. Pezzaniti, and R. A. Chipman, "Mueller matrix algorithms," in Polarization Analysis and Measurement, D. Goldstein and R. Chipman, eds.,Proc. SPIE 1746, 231-246 (1992). [CrossRef]
  2. R. A. Chipman, "Polarimetry," in Handbook of Optics, (McGraw-Hill, New York, 1994), Chap. 22.
  3. S. Breugnot and P. Clemenceau, "Modeling and performances of a polarization active imager at λ = 806nm," Opt. Eng. 39, 2681-2688 (2000). [CrossRef]
  4. A. Ambirajan and D. C. Look, "Optimum angles for a polarimeter: part 1," Opt. Eng. 34, 1651-1655 (1995). [CrossRef]
  5. J. Zallat, S. Aïnouz, and M. Ph. Stoll, "Optimal configurations for imaging polarimeters: impact of image noise and systematic errors," J. Opt. A 8, 807-814 (2006). [CrossRef]
  6. Y. Takakura and J. E. Ahmad, "Noise distribution of Mueller matrices retrieved with active rotating polarimeters," Appl. Opt. 46, 7354-7364 (2007) [CrossRef] [PubMed]
  7. M. H. Smith, "Optimization of a dual-rotating-retarder Mueller matrix polarimeter" Appl. Opt. 41, 2488-2493 (2002) [CrossRef] [PubMed]
  8. R. M. A. Azzam, "Photopolarimetric measurement of the Mueller matrix by Fourier analysis of a single detected signal," Opt. Lett. 2, 148-150 (1977) [CrossRef]
  9. J.W. Goodman, "Statistical properties of laser speckle patterns," in Laser Speckle and Related Phenomena, J. C. Dainty, ed., (Springer-Verlag, New York, 1984), Chap. 2.
  10. E. Isaacson and H. B. Keller, Analysis of Numerical Methods (John Wiley and Sons, 1966).
  11. G. W. Stewart, Introduction to Matrix Computations (Academic Press, New York, 1973).
  12. R. Kress, Numerical Analysis (Springer-Verlag, Berlin, 1998). [CrossRef]
  13. P. D. Lax, Functional Analysis (Wiley-Interscience, 2002).
  14. D. S. Kliger, J. W. Lewis, and C. E. Randall, Polarized Light in Optics and Spectroscopy (Academic Press, 1990).
  15. D. H. Goldstein and R. A. Chipman, "Error analysis of a Mueller matrix polarimeter," J. Opt. Soc. Am. A 7, 693-700 (1990). [CrossRef]
  16. B. Boulbry, B. Le Jeune, F. Pellen, J. Cariou, and J. Lotrian, "Identification of error parameters and calibration of a double-crystal birefringent wave plate with a broadband spectral light source," J. Phys. D 35, 2508-2515 (2002). [CrossRef]
  17. J. S. Tyo, "Design of optimal polarimeters: maximization of signal-to-noise ratio and minimization of systematic error," Appl. Opt. 41, 619-630 (2002) [CrossRef] [PubMed]
  18. D. S. Sabatke, M. R. Descour, E. L. Dereniak, W. C. Sweatt, S. A. Kemme, and G. S. Phipps, "Optimization of retardance for a complete Stokes polarimeter," Opt. Lett. 25, 802-804 (2000) [CrossRef]
  19. J. S. Tyo, "Noise equalization in Stokes parameter images obtained by use of variable-retardance polarimeters," Opt. Lett. 25, 1198-1200 (2000). [CrossRef]
  20. B. G. Hoover, R. A. Peredo, L. F. DeSandre, and L. J. Ulibarri, "Active polarimetric assessment of surface weathering," in Laser Radar Techniques for Atmospheric Sensing, U. N. Singh, ed., Proc. SPIE 5575, 38-43 (2004). [CrossRef]
  21. B. G. Hoover and J. S. Tyo, "Polarization components analysis for invariant discrimination," Appl. Opt. 46, 8364-8373 (2007). [CrossRef] [PubMed]
  22. J. J. Gil, "Characteristic properties of Mueller matrices," J. Opt. Soc. Am. A 17, 328-334 (2000). [CrossRef]
  23. J. J. Gil and E. Bernabeu, "A depolarization criterion in Mueller matrices," Opt. Acta 32, 259-261 (1985). [CrossRef]
  24. J. J. Gil and E. Bernabeu, "Depolarization and polarization indices of an optical system," Opt. Acta 33, 185-189 (1986). [CrossRef]
  25. M , Arioli, M. Baboulin, and S. Gratton, "A partial condition number for linear least squares problems," SIAM J. Matrix Anal. Appl. 29, 413-433 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MPEG (2957 KB)     
» Media 2: MPEG (3838 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited