OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 3 — Feb. 4, 2008
  • pp: 2147–2152

Supercontinuum generation by higher-order mode excitation in a photonic crystal fiber

R. Cherif, M. Zghal, L. Tartara, and V. Degiorgio  »View Author Affiliations


Optics Express, Vol. 16, Issue 3, pp. 2147-2152 (2008)
http://dx.doi.org/10.1364/OE.16.002147


View Full Text Article

Enhanced HTML    Acrobat PDF (184 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe an experiment in which a train of femtosecond pulses is coupled into a photonic crystal fiber (PCF) by means of an offset pumping technique that can selectively excite either the mode LP01 or LP11 or LP21. The PCF presents a wide range of wavelengths in which the fundamental mode experiences normal dispersion, whereas LP11 and LP21 propagate in the anomalous dispersion regime, generating a supercontinuum based on the soliton fission mechanism. We find that the existence of a cut-off wavelength for the higher-order modes makes the spectral broadening asymmetrical. This latter effect is particularly dramatic in the case of the LP21 mode, in which, by using a pump wavelength slightly below cut-off, the spectral broadening occurs only on the blue side of the pump wavelength. Our experimental results are successfully compared to numerical solutions of the nonlinear Schrödinger equation.

© 2008 Optical Society of America

OCIS Codes
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(060.5295) Fiber optics and optical communications : Photonic crystal fibers
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:
Photonic Crystal Fibers

History
Original Manuscript: December 3, 2007
Revised Manuscript: January 22, 2008
Manuscript Accepted: January 28, 2008
Published: January 31, 2008

Citation
R. Cherif, M. Zghal, L. Tartara, and V. Degiorgio, "Supercontinuum generation by higher-order mode excitation in a photonic crystal fiber," Opt. Express 16, 2147-2152 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-3-2147


Sort:  Year  |  Journal  |  Reset  

References

  1. J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fibers," Rev. Mod. Phys. 78, 1135-1184 (2006). [CrossRef]
  2. R. R. Alfano and S. L. Shapiro, "Emission in the region 4000 to 7000 Å via four-photon coupling in glass," Phys. Rev. Lett. 24, 584-587 (1970). [CrossRef]
  3. J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25-27 (2000). [CrossRef]
  4. A. V. Husakou and J. Herrmann, "Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers," Phys. Rev. Lett. 87, 203901 (2001). [CrossRef] [PubMed]
  5. J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, "Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping," J. Opt. Soc. Am. B 19, 765-771 (2002). [CrossRef]
  6. A. Gaeta, "Nonlinear propagation and continuum generation in microstructured optical fibers," Opt. Lett. 27, 924-926 (2002). [CrossRef]
  7. W. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana, and P. St. J. Russell, "Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibers," Opt. Express 12, 299-309 (2004). [CrossRef] [PubMed]
  8. P. A. Champert, V. Couderc, P. Leproux, S. Février, V. Tombelaine, L. Labonté, P. Roy, P. Nérin, and C. Froehly, "White-light supercontinuum generation in normally dispersive optical fiber using original multi-wavelength pumping system," Opt. Express 12, 4366-4371 (2004). [CrossRef] [PubMed]
  9. I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, "Dispersive wave generation by solitons in microstructured optical fibers,’’ Opt. Express 12, 124-135 (2004). [CrossRef] [PubMed]
  10. G. Genty, M. Lehtonen, H. Ludvigsen, and M. Kaivola, "Enhanced bandwidth of supercontinuum generated in microstructured fibers," Opt. Express 12, 3471-3480 (2004). [CrossRef] [PubMed]
  11. A. V. Gorbach, D. V. Skryabin, J. M. Stone, and J. C. Knight, "Four-wave mixing of solitons with radiation and quasi-nondispersive wave packets at the short-wavelength edge of a supercontinuum," Opt. Express 14, 9854-9863 (2006). [CrossRef] [PubMed]
  12. A. Efimov, A. J. Taylor, F. G. Omenetto, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Phase-matched third harmonic generation in microstructured fibers," Opt. Express 11, 2567-2576 (2003). [CrossRef] [PubMed]
  13. L. Tartara, I. Cristiani, V. Degiorgio, F. Carbone, D. Faccio, M. Romagnoli, and W. Belardi, "Phase-matched nonlinear interactions in a holey fiber induced by infrared super-continuum generation," Opt. Commun. 215, 191-197 (2003). [CrossRef]
  14. S. O. Konorov, E. E. Serebryannikov, A. M. Zheltikov, P. Zhou, A. P. Tarasevitch, and D. von der Linde, "Mode-controlled colors from microstructure fibers," Opt. Express 12, 730-735 (2004). [CrossRef] [PubMed]
  15. J. H. Lee, J. van Hove, C. Xu, S. Ramachandran, S. Ghalmi, and M. F. Yan, "Generation of femtosecond pulses at 1350 nm by Cerenkov radiation in higher-order-mode fiber," Opt. Lett. 32, 1053-1055 (2007). [CrossRef] [PubMed]
  16. L. Tartara, I. Cristiani, and V. Degiorgio, "Blue light and infrared continuum generation by soliton fission in a microstructured fiber," Appl. Phys. B 77, 307-311 (2003). [CrossRef]
  17. M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, "Nonlinear optics in photonic nanowires," Opt. Express 16, 1300-1320 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited