OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 3 — Feb. 4, 2008
  • pp: 2176–2190

A high-accuracy algorithm for designing arbitrary holographic atom traps

Matthew Pasienski and Brian DeMarco  »View Author Affiliations


Optics Express, Vol. 16, Issue 3, pp. 2176-2190 (2008)
http://dx.doi.org/10.1364/OE.16.002176


View Full Text Article

Enhanced HTML    Acrobat PDF (7596 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the realization of a new iterative Fourier-transform algorithm for creating holograms that can diffract light into an arbitrary two-dimensional intensity profile. We show that the predicted intensity distributions are smooth with a fractional error from the target distribution at the percent level. We demonstrate that this new algorithm outperforms the most frequently used alternatives typically by one and two orders of magnitude in accuracy and roughness, respectively. The techniques described in this paper outline a path to creating arbitrary holographic atom traps in which the only remaining hurdle is physical implementation.

© 2008 Optical Society of America

OCIS Codes
(020.7010) Atomic and molecular physics : Laser trapping
(090.1760) Holography : Computer holography
(090.1995) Holography : Digital holography

ToC Category:
Trapping

History
Original Manuscript: December 6, 2007
Revised Manuscript: January 21, 2008
Manuscript Accepted: January 27, 2008
Published: January 31, 2008

Citation
Matthew Pasienski and Brian DeMarco, "A high-accuracy algorithm for designing arbitrary holographic atom traps," Opt. Express 16, 2176-2190 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-3-2176


Sort:  Year  |  Journal  |  Reset  

References

  1. D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003). [CrossRef] [PubMed]
  2. S. N. Dixit, J. K. Lawson, K. R. Manes, H. T. Powell, and K. A. Nugent, "Kinoform phase plates for focal plane irradiance profile control," Opt. Lett. 19, 417-419 (1994). [PubMed]
  3. Y. Lin, T. J. Kessler, and G. Lawrence, "Distributed phase plates for super-Gaussian focal-plane irradiance profiles," Opt. Lett. 20, 764-766 (1995). [CrossRef] [PubMed]
  4. J. S. Liu and M. R. Taghizadeh, "Iterative algorithm for the design of diffractive phase elements for laser beam shaping," Opt. Lett. 27, 1463-1465 (2002). [CrossRef] [PubMed]
  5. R. Ozeri, L. Khaykovich, and N. Davidson, "Long spin relaxation times in a single-beam blue-detuned optical trap," Phys. Rev. A 59, R1750-R1753 (1999). [CrossRef] [PubMed]
  6. S. Bergamini, B. Durquié, M. Jones, L. Jacubowicz, A. Browaeys, and P. Grangier, "Holographic generation of microtrap arrays for single atoms by use of a programmable phase modulator," J. Opt. Soc. Am. B 21, 1889-1894 (2004). [CrossRef] [PubMed]
  7. J. Sebby-Strabley, R. T. R. Newell, J. O. Day, E. Brekke, and T. G. Walker, "High-density mesoscopic atom clouds in a holographic atom trap," Phys. Rev. A 71, 021401 (2005). [CrossRef] [PubMed]
  8. V. Boyer, R. M. Godun, G. Smirne, D. Cassettari, C. M. Chandrashekar, A. B. Deb, Z. J. Laczik, and C. J. Foot, "Dynamic manipulation of Bose-Einstein condensates with a spatial light modulator," Phys. Rev. A 73, 031402 (2006). [CrossRef] [PubMed]
  9. D. McGloin, G. C. Spalding, H. Melville, W. Sibbett, and K. Dholakia, "Applications of spatial light modulators in atom optics," Opt. Express 11, 158-166 (2003). [CrossRef] [PubMed]
  10. B. T. Seaman, M. Krämer, D. Z. Anderson, and M. J. Holland, "Atomtronics: Ultracold-atom analogs of electronic devices," Phys. Rev. A 75, 023615 (2007). [CrossRef] [PubMed]
  11. V. V. Kotlyar, P. G. Seraphimovich, and V. A. Soifer, "An iterative algorithm for designing diffractive optical elements with regularization," Opt. Laser Eng. 29, 261-268 (1998). [CrossRef] [PubMed]
  12. P. Senthilkumaran and F. Wyrowski, "Phase synthesis in wave-optical engineering: mapping- and diffuser-type approaches," J. Mod. Opt. 49, 1831-1850 (2002). [CrossRef] [PubMed]
  13. V. Arrizón, M. Testorf, S. Sinzinger, and J. Jahns, "Iterative optimization of phase-only diffractive optical elements based on a lenslet array," J. Opt. Soc. Am. A 17, 2157-2164 (2000). [CrossRef] [PubMed]
  14. M. Gruber, "Diffractive optical elements as raster-image generators", Appl. Opt. 40, 5830-5839 (2001). [CrossRef] [PubMed]
  15. A. E. Leanhardt, A. P. Chikkatur, D. Kielpinski, Y. Shin, T. L. Gustavson, W. Ketterle, and D. E. Pritchard, "Propagation of Bose-Einstein condensates in a magnetic waveguide," Phys. Rev. Lett. 89, 040401 (2002). [CrossRef] [PubMed]
  16. J. Fortágh, H. Ott, S. Kraft, A. Günther, and C. Zimmermann, "Surface effects in magnetic microtraps," Phys. Rev. A 66, 041604 (2002). [CrossRef] [PubMed]
  17. A. E. Leanhardt, Y. Shin, A. P. Chikkatur, D. Kielpinski, W. Ketterle, and D. E. Pritchard, "Bose-Einstein condensates near a microfabricated surface," Phys. Rev. Lett. 90, 100404 (2003). [CrossRef] [PubMed]
  18. J. Estève, C. Aussibal, T. Schumm, C. Figl, D. Mailly, I. Bouchoule, C. I. Westbrook, and A. Aspect, "Role of wire imperfections in micromagnetic traps for atoms," Phys. Rev. A 70, 043629 (2004). [CrossRef] [PubMed]
  19. B. Damski, J. Zakrzewski, L. Santos, P. Zoller, and M. Lewenstein, "Atomic Bose and Anderson glasses in optical lattices," Phys. Rev. Lett. 91, 080403 (2003). [CrossRef] [PubMed]
  20. M. A. Seldowitz, J. P. Allebach, and D. W. Sweeney, "Synthesis of digital holograms by direct binary search," Appl. Opt. 26, 2788-2798 (1987). [CrossRef] [PubMed]
  21. L. Legeard, P. Réfrégier, and P. Ambs, "Multicriteria optimality for iterative encoding of computer-generated holograms," Appl. Opt. 36, 7444-7449 (1997). [CrossRef]
  22. J. R. Fienup, "Iterative method applied to image reconstruction and to computer-generated holograms," Opt. Eng. 19, 297-305 (1980). [PubMed]
  23. F. Wyrowski, "Diffraction efficiency of analog and quantized digital amplitude holograms: analysis and manipulation," J. Opt. Soc. Am. A 7, 383-393 (1990). [CrossRef] [PubMed]
  24. V. Soifer, Methods for Computer Design of Diffractive Optical Elements (John Wiley and Sons, NY, 2002). [PubMed]
  25. O. Ripoll, V. Kettunen, and H. P. Herzig, "Review of iterative Fourier-transform algorithms for beam shaping applications," Opt. Eng. 43, 2549-2556 (2004). [CrossRef] [PubMed]
  26. G. C. Spalding, J. Courtial, and R. DiLeonardo, "Holographic Optical Trapping," in Structured Light and its Applications: An Introduction to Phase-Structured Beams and Nanoscale Optical Forces, D. L. Andrews, ed., (Elsevier Press) (to be published). [PubMed]
  27. An IFTA is most generically described using the block-projection algorithm formalism, which is not necessary for the relatively simple MRAF algorithm. For a description of the block-projection formalism as applied to IFTAs, see R. Piestun and J. Shamir, "Synthesis of Three-Dimensional Light Fields and Applications," Proc. IEEE 90, 222-244 (2002). [CrossRef] [PubMed]
  28. We introduce several quantities in this manuscript which are functions of the input and output plane coordinates. For notational simplicity, we indicate this functional dependence only for the first use and when quantities are explicitly written as functions of the coordinates.
  29. F. Wyrowski and O. Brynghdahl, "Iterative Fourier-transform algorithm applied to computer holography," J. Opt. Soc. Am. A 5, 1058-1065 (1988). [CrossRef] [PubMed]
  30. F. Wyrowski, "Diffractive optical elements: iterative calculation of quantized, blazed phase structures," J. Opt. Soc. Am. A 7, 961-969 (1990). [CrossRef] [PubMed]
  31. We assume in this paper that only the center of a Gaussian beam interacts with the CGH, making the effect of intrinsic phase curvature negligible. Any effect of the intrisic phase curvature can be removed in the final kinoform using a compensating phase profile. [PubMed]
  32. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1998). [PubMed]
  33. L. Bigué and P. Ambs, "Optimal multicriteria approach to the iterative Fourier transform algorithm," Appl. Opt. 40, 5886-5893 (2001). [CrossRef] [PubMed]
  34. S. Bühling and F. Wyrowski, "Improved transmission design algorithms by utilizing variable-strength projections," J. Mod. Opt. 49, 1871-1892 (2002). [CrossRef] [PubMed]
  35. H. Kim, B. Yang, and B. Lee, "Iterative Fourier transform algorithm with regularization for the optimal design of diffractive optical elements," J. Opt. Soc. Am. A 21, 2353-2365 (2004). [CrossRef]
  36. H. Akahori, "Spectrum leveling by an iterative algorithm with a dummy area for synthesizing the kinoform," App. Opt. 25, 802-811 (1986). [CrossRef]
  37. H. Aagedal, M. Schmid, T. Beth, S. Tiewes, and F. Wyrowski, "Theory of speckles in diffractive optics and its application to beam shaping," J. Mod. Opt. 43, 1409-1421 (1996). [CrossRef]
  38. H. Kim and B. Lee, "Diffractive optical element with apodized aperature for shaping vortex-free diffraction image," Jpn. J. App. Phys. 43, 1530-1533 (2004). [CrossRef]
  39. P. Senthilkumaran, F. Wyrowski, and H. Schimmel, "Vortex stagnation problem in iterative Fourier-transform algorithms," Opt. Lasers Eng. 43, 43-56 (2005). [CrossRef] [PubMed]
  40. E. A. Sziklas and A. E. Siegman, "Mode calculations in unstable resonators with flowing saturable gain. 2: Fast Fourier transform method," Appl. Opt. 14, 1874-1889 (1975). [CrossRef] [PubMed]
  41. K.-H. Brenner, "Method for designing arbitrary two-dimensional continutous phase elements," Opt. Lett. 25, 31-33 (2000). [CrossRef] [PubMed]
  42. D. R. Scherer, C. N. Weiler, T. W. Neely, and B. P. Anderson, "Vortex formation by merging of multiple trapped Bose-Einstein condensates," Phys. Rev. Lett. 98, 110402 (2007). [CrossRef] [PubMed]
  43. D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller, "Cold bosonic atoms in optical lattices," Phys. Rev. Lett. 81, 3108-3111 (1998). [CrossRef] [PubMed]
  44. B. DeMarco, C. Lannert, S. Vishveshwara, and T.-C. Wei, "Structure and stability of Mott-insulator shells of bosons trapped in an optical lattice," Phys. Rev. A 71, 063601 (2005). [CrossRef] [PubMed]
  45. A. Bezryadin, C. N. Lau, and M. Tinkham, "Quantum suppression of superconductivity in ultrathin nanowires," Nature 404, 971-974 (2000). [CrossRef] [PubMed]
  46. A 768×768 pixel kinoform and 256 discrete phase levels were used to match a commercially available, scientificgrade SLM: the Hamamatsu X8267. [PubMed]
  47. The code used to generate results for the MRAF algorithm in this paper is available at http://research.physics.uiuc.edu/DeMarco/publications.htm.
  48. N. Bertaux, Y. Frauel, P. Réfrégier, and B. Javidi, "Speckle removal using a maximum-likelihood technique with isoline gray-level regularization," J. Opt. Soc. Am. A 21, 2283-2291 (2004). [CrossRef] [PubMed]
  49. T. Willmore, Riemannian Geometry (Oxford University Press, 1997).
  50. T. Inoue, N. Matsumoto, N. Fukuchia, Y. Kobayashi, and T. Hara, "Highly stable wavefront control using a hybrid liquid-crystal spatial light modulator," Proc. SPIE 6306, 630603 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited