OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 3 — Feb. 4, 2008
  • pp: 2276–2287

Field enhancement in a circular aperture surrounded by a single channel groove

Nicolas Bonod, Evgeny Popov, Davy Gérard, Jérome Wenger, and Hervé Rigneault  »View Author Affiliations

Optics Express, Vol. 16, Issue 3, pp. 2276-2287 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (216 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Numerical analysis of diffraction by a single aperture surrounded by a circular shallow channel in a metallic screen shows the possibility of a 50-fold increase of the electric field intensity inside the central aperture, when compared to the incident field. Detailed analysis of cavity modes and their coupling through surface plasmon wave determine the parameters leading to maximum field enhancement. This effect can be used in high-efficiency single-molecule fluorescence analysis in attoliter volumes.

© 2008 Optical Society of America

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(180.2520) Microscopy : Fluorescence microscopy
(240.6680) Optics at surfaces : Surface plasmons
(140.3945) Lasers and laser optics : Microcavities
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Diffraction and Gratings

Original Manuscript: November 26, 2007
Revised Manuscript: January 15, 2008
Manuscript Accepted: January 15, 2008
Published: February 1, 2008

Virtual Issues
Vol. 3, Iss. 3 Virtual Journal for Biomedical Optics

Nicolas Bonod, Evgeny Popov, Davy Gérard, Jerome Wenger, and Hervé Rigneault, "Field enhancement in a circular aperture surrounded by a single channel groove," Opt. Express 16, 2276-2287 (2008)

Sort:  Year  |  Journal  |  Reset  


  1. E. A. Ash and G. Nicholls, "Super-resolution aperture scanning microscope," Nature 237, 510-511 (1972). [CrossRef] [PubMed]
  2. A. Lewis, M. Isaacson, A. Harootunian, and A. Muray, "Development of a 500 Å spatial resolution light microscope I. Light is efficiently transmitted through λ/16 diameter apertures," Ultramicroscopy 13, 227-232 (1984). [CrossRef]
  3. E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, and E. Kratschmer, "Near-field scanning optical microscopy (NSOM), development and biophysical applications," J. Biophys. 49, 269-279 (1986). [CrossRef]
  4. H. A. Bethe, "Theory of diffraction by small holes," Phys. Rev. 66, 163-182 (1944). [CrossRef]
  5. J. D. Jackson, Classical Electrodynamics, 3rd ed., (John Wiley, New York, 1998).
  6. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391, 667-669 (1998). [CrossRef]
  7. E. Popov, M. Nevière, S. Enoch, and R. Reinisch, "Theory of light transmission through subwavelength periodic hole arrays," Phys. Rev. B 62, 16100-16108 (2000). [CrossRef]
  8. S. Enoch, E. Popov, M. Nevière, and R. Reinisch, "Enhanced light transmission by hole arrays," J. Opt. A: Pure and Applied Optics 4, S83-S87 (2002) [CrossRef]
  9. M. J. Levene, J. Kotach, S. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, "Zero-mode waveguide for single-molecule analysis at high concentrations," Science 209, 682-686 (2003). [CrossRef]
  10. H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. Ebbesen, and P. F. Lenne, "Detection enhancement of single molecules at high concentrations in subwavelength apertures," Phys. Rev. Lett. 95, 117401 (2005). [CrossRef] [PubMed]
  11. E. Popov, M. Nevière, J. Wenger, P.-F. Lenne, H. Rigneault, P. Chaumet, N. Bonod, J. Dintinger, and T. Ebbesen, "Field enhancement in single subwavelength apertures," J. Opt. Soc. Am. A 23, 2342-2348 (2006). [CrossRef]
  12. E. Popov, M. Nevière, A.-L. Fehrembach, and N. Bonod, "Optimization of plasmon excitation at structured apertures," Appl. Opt. 44, 6141-6154 (2005). [CrossRef] [PubMed]
  13. N. Bonod, E. Popov, and M. Neviere, "Differential theory of diffraction by finite cylindrical objects," J. Opt. Soc. Am. A 22, 481-490 (2005). [CrossRef]
  14. F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, "Surfaces with holes in them: new plasmonic metamaterials," J. Opt. A: Pure Appl. Opt. 7, S97-S101 (2005). [CrossRef]
  15. E. Popov, N. Bonod, and S. Enoch, "Comparison of plasmon surface wave on shallow and deep 1D and 2D gratings," Opt. Express 15, 4224-4237 (2007). [CrossRef] [PubMed]
  16. M. Nevière, The Homogeneous Problem in Electromagnetic Theory of Gratings, R. Petit, ed., (Springer, 1980) Chap. 5.
  17. F. I. Baida, "Enhanced transmission through subwavelength metallic coaxial apertures by excitation of the TEM mode," Appl. Phys. B 89,145-149 (2007). [CrossRef]
  18. A. Snyder and J. Love, Optical Waveguide Theory (Kluwert Academic, Boston, 1983).
  19. F. Baida, A. Belkhir, and D. Van Labeke, "Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes," Phys. Rev. B 74, 205419 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited