OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 4 — Feb. 18, 2008
  • pp: 2322–2335

Wideband detection of transient solid-state dynamics using ultrafast fiber lasers and asynchronous optical sampling

Vladimir A. Stoica, Yu-Miin Sheu, David A. Reis, and Roy Clarke  »View Author Affiliations

Optics Express, Vol. 16, Issue 4, pp. 2322-2335 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (482 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate optical time-domain spectroscopy from femtoseconds to nanoseconds using an ultrafast dual-fiber-laser system with kilohertz continuous scanning rates. Utilizing different wavelengths for the pump and probe beams, we exploit this system’s broad range of timescales for quantitative studies of thermal transport and the detection of coherent spin and lattice excitations in epitaxial magnetic thin films. The extraordinary temporal dynamic range provides a way to connect the fast and slow timescales in the observation of dissipation and decoherence processes.

© 2008 Optical Society of America

OCIS Codes
(120.6810) Instrumentation, measurement, and metrology : Thermal effects
(300.6500) Spectroscopy : Spectroscopy, time-resolved
(310.6870) Thin films : Thin films, other properties
(320.5390) Ultrafast optics : Picosecond phenomena
(320.7100) Ultrafast optics : Ultrafast measurements

ToC Category:

Original Manuscript: November 27, 2007
Revised Manuscript: January 29, 2008
Manuscript Accepted: January 31, 2008
Published: February 4, 2008

Vladimir A. Stoica, Yu-Miin Sheu, David A. Reis, and Roy Clarke, "Wideband detection of transient solid-state dynamics using ultrafast fiber lasers and asynchronous optical sampling," Opt. Express 16, 2322-2335 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Perrin, "Investigation of short-time heat transfer effects by an optical pump-probe method," in Microscale and Nanoscale Heat Transfer, topics in Applied Physics, S. Voltz, ed., (Springer, Berlin, 2007), Vol. 107, pp. 333-359. [CrossRef]
  2. P. A. Elzinga, F. E. Lytle, Y. Jiang, G. B. King, and N. M. Laurendeau, "Pump probe spectroscopy by asynchronous optical-sampling," Appl. Spectrosc. 41, 2-4 (1987). [CrossRef]
  3. G. A. Antonelli, B. Perrin, B. C. Daly, and D. G. Cahill, "Characterization of mechanical and thermal properties using ultrafast optical metrology," MRS Bull. 31, 607-613 (2006). [CrossRef]
  4. R. Merlin, "Generating coherent THz phonons with light pulses," Solid-State Commun. 102, 207-220 (1997). [CrossRef]
  5. W. S. Capinski and H. J. Maris, "Improved apparatus for Picosecond Pump-and-Probe Optical Measurements," Rev. Sci. Instrum. 67, 2720-2726 (1996). [CrossRef]
  6. E. Lill, S. Schneider, and F. Dorr, "Rapid optical sampling of relaxation-phenomena employing two time-correlated picosecond pulse trains,?Appl. Phys. 14, 399-401 (1977). [CrossRef]
  7. W. T. Barnes, Jr., ?Modulated gain spectroscopy, ? Ph.D. Dissertation, Purdue University, West Lafayette, Indiana (1980).
  8. A. F. Bartels, F. Hudert, C. Janke, T. Dekorsy, and K. Kohler, "Femtosecond time-resolved optical pump-probe spectroscopy at kilohertz-scan-rates over nanosecond-time-delays without mechanical delay line," Appl. Phys. Lett. 88, 041117 (2006). [CrossRef]
  9. http://www.menlosystems.com
  10. S. Adachi, S. Takeyama, and Y. Takagi, "Dual wavelength optical sampling technique for ultrafast transient bleaching spectroscopy," Opt. Commun. 117, 71-77 (1995). [CrossRef]
  11. J. S. Lannin, J. M. Calleja, and M. Cardona, "Second-order Raman scattering in the group-Vb semimetals: Bi, Sb, and As," Phys. Rev. B 12, 585-593 (1975). [CrossRef]
  12. G. A. Garrett, T. F. Albrecht, J. F. Whitaker, and R. Merlin, "Coherent THz phonons driven by light pulses and the Sb problem: What is the mechanism?," Phys. Rev. Lett. 77, 3661 (1996). [CrossRef] [PubMed]
  13. R. J. Stevens, A. N. Smith, and P. M. Norris, "Signal analysis and characterization of experimental setup for the transient thermoreflectance technique," Rev. Sci. Instrum. 77, 084901 (2006). [CrossRef]
  14. K. Postava, H. Jaffres, A. Schuhl, F. Nguyen Van Dau, M. Goiran, and A. R. Fert, "Linear and quadratic magneto-optical measurements of the spin reorientation in epitaxial Fe films on MgO," J. Magn. Magn. Mater. 172, 199-208 (1997). [CrossRef]
  15. J. Zak, E. R. Moog, C. Liu, and S. D. Bader, "Magneto-optics of multilayers with arbitrary magnetization directions," Phys. Rev. B 43, 6423 (1991). [CrossRef]
  16. G. C. Cho, W. Kütt, and H. Kurz, "Subpicosecond time-resolved coherent-phonon oscillations in GaAs," Phys. Rev. Lett. 65, 764-766 (1990). [CrossRef] [PubMed]
  17. M. I. Kaganov, I. M. Lifshitz, and L. V. Tanatarov, "Relaxation between electrons and the crystalline lattice," Sov. Phys. JETP 4, 173-180 (1957).
  18. R. J. Stevens, A. N. Smith, and P. M. Norris, "Measurement of thermal boundary conductance of a series of metal-dielectric interfaces by the transient thermoreflectance technique," J. Heat Transfer 127, 315-322 (2005). [CrossRef]
  19. The heat diffusion model (equations 2-7 from [15]) can be applied if the time constant of heat diffusion in film (?f) and interface time constant (?i) follows ?f/?i = d ?k / kf <1 (equation 10), where d is the film thickness. If ?k ~ 108 to 109 W/m2K and kf is from few tens to few hundreds W/Km then d should be < 100 nm, which verifies that d for our samples (70 nm) satisfies this criterion.
  20. E. G. Gamaly, A. V. Rode, and B. Luther-Davies, "Ultrafast ablation with high-pulse-rate lasers. Part I: Theoretical considerations," J. Appl. Phys. 85, 4213 (1999). [CrossRef]
  21. C. A. Paddock and G. L. Eesley, "Transient thermoreflectance from thin metal-films," J. Appl. Phys. 60, 285-290 (1986). [CrossRef]
  22. P. B. Johnson and R. W. Christy, "Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd," Phys. Rev. B 9, 5056-5070 (1974). [CrossRef]
  23. M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, "Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W," Appl. Opt. 24, 4493-4499 (1985). [CrossRef]
  24. R. J. Stoner and H. J. Maris, "Kapitza conductance and heat-flow beween solids at temperatures from 50 to 300 K," Phys. Rev. B 48, 16373-16387 (1993). [CrossRef]
  25. C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, "Surface generation and detection of phonons by picosecond light-pulses," Phys. Rev. B 34, 4129-4138 (1986). [CrossRef]
  26. J. K. Miller, J. Qi, Y. Xu, Y.-J. Cho, X. Liu, J. K. Furdyna, I. Perakis, T. V. Shahbazyan, and N. Tolk, "Near-bandgap wavelength dependence of long-lived traveling coherent longitudinal acoustic phonons in GaSb-GaAs heterostructures," Phys. Rev. B 74, 113313 (2006). [CrossRef]
  27. D. E. Aspnes and A. A. Studna, "Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV," Phys. Rev. B 27, 985-1009 (1983). [CrossRef]
  28. H. J. McSkimin, "Measurement of elastic constants at low temperatures by means of ultrasonic waves - data for silicon and germanium single crystals, and for fused silica," J. Appl. Phys. 24, 988-997 (1953). [CrossRef]
  29. G. Ju, A. V. Nurmikko, R. F. C. Farrow, R. F. Marks, M. J. Carey, and B. A. Gurney, "Ultrafast time resolved photoinduced magnetization rotation in a ferromagnetic/antiferromagnetic exchange coupled system," Phys. Rev. Lett. 82, 3705-3708 (1999). [CrossRef]
  30. M. van Kampen, C. Jozsa, J. T. Kohlhepp, P. LeClair, L. Lagae, W. J. M.de Jonge, and B. Koopmans, "All-optical probe of coherent spin waves," Phys. Rev. Lett. 88, 227201 (2002). [CrossRef] [PubMed]
  31. V. A. Stoica, R. Merlin, R. A. Lukaszew, and R. Clarke, "Time-resolved spin dynamics studies of ferromagnetic thin films grown by molecular beam epitaxy," presented at APS March meeting, Los Angeles, CA, USA, 21-25 March 2005.
  32. F. Schreiber, J. Pflaum, Z. Frait, Th. Muhge, and J. Pelzl, "Gilbert damping and g-factor in FexCo1-x alloy films," Solid-State Commun. 93, 965-968 (1995). [CrossRef]
  33. M. Farle, "Ferromagnetic resonance of ultrathin metallic layers," Rep. Prog. Phys. 61, 755-826 (1998). [CrossRef]
  34. S. S. Kalarickal, P. Krivosik, M. Z. Wu, C. E. Patton, M. L. Schneider, P. Kabos, T. J. Silva, J. P. Nibarger, "Ferromagnetic resonance linewidth in metallic thin films: Comparison of measurement methods," J. Appl. Phys. 99, 093909 (2006). [CrossRef]
  35. J. J. Krebs, F. J. Rachford, P. Lubitz, and G. A. Prinz, "Ferromagnetic resonance studies of very thin epitaxial single-crystals of iron," J. Appl. Phys. 53, 8058-8060 (1982). [CrossRef]
  36. J. R. Sandercock and W. Wettling, "Light scattering from thermal magnons in iron and nickel," IEEE Trans. Magn. 14, 442-444 (1978). [CrossRef]
  37. R. W. Damon and J. R. Eshbach, "Magnetostatic modes of a ferromagnetic slab," J. Phys. Chem. Solids 19, 308-320 (1961). [CrossRef]
  38. M. Madami, S. Tacchi, G. Carlotti, G. Gubbiotti, and R. L. Stamps, "In situ Brillouin scattering study of the thickness dependence of magnetic anisotropy in uncovered and Cu-covered Fe/GaAs(100) ultrathin films," Phys. Rev. B 69, 144408 (2004). [CrossRef]
  39. H. Puszkarski, "Theory of surface states in spin wave resonance," Prog. Surf. Sci. 9, 191-247 (1979). [CrossRef]
  40. G. S. Krinchik and V. A. Artem’ev, "Magneto-optical properties of Ni, Co and Fe in ultraviolet visible and infrared parts of spectrum," Sov. Phys. JETP 26, 1080-1085 (1968).
  41. A. Barman, S. Wang, J. Maas, A. R. Hawkins, S. Kwon, J. Bokor, A. Liddle, H. Schmidt, "Size dependent damping in picosecond dynamics of single nanomagnets," Appl. Phys. Lett. 90, 202504 (2007). [CrossRef]
  42. P. Grünberg, R. Schreiber, Y. Pang, M. B. Brodsky, and H. Sowers, "Layered magnetic structures: Evidence for antiferromagnetic coupling of Fe layers across Cr interlayers," Phys. Rev. Lett. 57, 2442-2445 (1986). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited