OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 4 — Feb. 18, 2008
  • pp: 2336–2350

Direct-writing of inverted domains in lithium niobate using a continuous wave ultra violet laser

A. C. Muir, C. L. Sones, S. Mailis, R. W. Eason, T. Jungk, Á. Hoffmann, and E. Soergel  »View Author Affiliations


Optics Express, Vol. 16, Issue 4, pp. 2336-2350 (2008)
http://dx.doi.org/10.1364/OE.16.002336


View Full Text Article

Enhanced HTML    Acrobat PDF (2026 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The inversion of ferroelectric domains in lithium niobate by a scanning focused ultra-violet laser beam (λ=244nm) is demonstrated. The resulting domain patterns are interrogated using piezoresponse force microscopy and by chemical etching in hydrofluoric acid. Direct ultra-violet laser poling was observed in un-doped congruent, iron doped congruent and titanium in-diffused congruent lithium niobate single crystals. A model is proposed to explain the mechanism of domain inversion.

© 2008 Optical Society of America

OCIS Codes
(140.3610) Lasers and laser optics : Lasers, ultraviolet
(160.2260) Materials : Ferroelectrics
(160.3730) Materials : Lithium niobate
(160.4670) Materials : Optical materials

ToC Category:
Materials

History
Original Manuscript: November 30, 2007
Revised Manuscript: January 26, 2008
Manuscript Accepted: January 27, 2008
Published: February 4, 2008

Citation
A. C. Muir, C. L. Sones, S. Mailis, R. W. Eason, T. Jungk, A. Hoffman, and E. Soergel, "Direct-writing of inverted domains in lithium niobate using a continuous wave ultra violet laser," Opt. Express 16, 2336-2350 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-4-2336


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. S. Weis and T. K. Gaylord, "Lithium Niobate: Summary of Physical Properties and Crystal Structure," Appl. Phys. A 37, 191 - 203 (1985). [CrossRef]
  2. A. C. Busacca, C. L. Sones, R. W. Eason, and S. Mailis, "First-order quasi-phase-matched blue light generation in surface-poled Ti : indiffused lithium niobate waveguides," Appl. Phys. Lett. 84, 4430 - 4432 (2004). [CrossRef]
  3. F. S. Chen andW.W. Benson, "A lithium niobate light modulator for fiber optical communications," Proceedings of the IEEE 62(1), 133 - 134 (1974). [CrossRef]
  4. C. L. Sones, S. Mailis, V. Apostolopoulos, I. E. Barry, C. Gawith, P. G. R. Smith, and R.W. Eason, "Fabrication of piezoelectric micro-cantilevers in domain-engineered LiNbO3 single crystals," J. Micromech. Microeng. 12(1), 53 - 57 (2002). URL http://dx.doi.org/10.1088/0960-1317/12/1/308. [CrossRef]
  5. C. L. Sones, M. C. Wengler, C. E. Valdivia, S. Mailis, R.W. Eason, K. Buse, "Light-induced order-of-magnitude decrease in the electric field for domain nucleation in MgO-doped lithium niobate crystals," Appl. Phys. Lett. 86, 212901 (2005). [CrossRef]
  6. C. E. Valdivia, C. L. Sones, S. Mailis, J. D. Mills, and R. W. Eason, "Ultrashort-pulse optically-assisted domain engineering in lithium niobate," Ferroelectrics 340, 75 - 82 (2006). URL http://dx.doi.org/10.1080/150190600888983. [CrossRef]
  7. C. L. Sones, C. E. Valdivia, J. G. Scott, S. Mailis, R. W. Eason, D. A. Scrymgeour, V. Gopalan, T. Jungk, and E. Soergel, "Ultraviolet laser-induced sub-micron periodic domain formation in congruent undoped lithium niobate crystals," Appl. Phys. B 80(3), 341 - 344 (2005). URL http://dx.doi.org/10.1007/s00340-005-1731-7. [CrossRef]
  8. C. E. Valdivia, C. L. Sones, J. G. Scott, S. Mailis, R. W. Eason, D. A. Scrymgeour, V. Gopalan, T. Jungk, E. Soergel, and I. Clark, "Nanoscale surface domain formation on the +z face of lithium niobate by pulse d ultraviolet laser illumination," Appl. Phys. Lett. 86(2), 022906 (2005). URL http://dx.doi.org/10.1063/1.1849414. [CrossRef]
  9. I. T. Wellington, C. E. Valdivia, T. J. Sono, C. L. Sones, S. Mailis, and R. W. Eason, "Ordered nano-scale domains in lithium niobate single crystals via phase-mask assisted all-optical poling," Appl. Surf. Sci. 253(9), 4215 - 4219 (2007). URL http://dx.doi.org/10.1016/j.apsusc.2006.09.018. [CrossRef]
  10. T. Jungk, A. Hoffmann, and E. Soergel, "Quantitative analysis of ferroelectric domain imaging with piezoresponse force microscopy," Appl. Phys. Lett. 89(16), 163,507 - (2006). URL http://dx.doi.org/10.1063/1.2362984. [CrossRef]
  11. E. Soergel, "Visualization of ferroelectric domains in bulk single crystals," Appl. Phys. B 81(6), 729 - 752 (2005). URL http://dx.doi.org/10.1007/s00340-005-1989-9. [CrossRef]
  12. C. L. Sones, S. Mailis, W. S. Brocklesby, R. W. Eason, and J. R. Owen, "Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations," J. Mater. Chem 12, 295 - 298 (2002).
  13. A. C. Muir, G. J. Daniell, C. P. Please, I. T. Wellington, S. Mailis, and R. W. Eason, "Modelling the formation of optical waveguides produced in LiNbO3 by laser induced thermal diffusion of lithium ions," Appl. Phys. A83(3), 389 - 396 (2006). URL http://dx.doi.org/10.1007/s00339-006-3493-4. [CrossRef]
  14. T. J. Sono, J. G. Scott, C. L. Sones, C. E. Valdivia, S. Mailis, R. W. Eason, J. G. Frey, and L. Danos, "Reflection second harmonic generation on a z-cut congruent lithium niobate crystal," Phys. Rev. B 74(20), 205424 (2006). URL. [CrossRef]
  15. V. Y. Shur, "Kinetics of ferroelectric domains: Application of general approach to LiNbO3 and LiTaO3," J. Mater. Sci. 41(1), 199 - 210 (2006). URL http://dx.doi.org/10.1007/s10853-005-6065-7 [CrossRef]
  16. V. Y. Shur, D. K. Kuznetsov, A. I. Lobov, E. V. Nikolaeva, M. A. Dolbilov, A. N. Orlov, and V. V. Osipov, "Formation of self-similar surface nano-domain structures in lithium niobate under highly nonequilibrium conditions," Ferroelectrics 341, 85 - 93 (2006). URL http://dx.doi.org/10.1080/00150190600897075. [CrossRef]
  17. M. E. Lines and A. M. Glass, Principles and Application of Ferroelectrics and Related Materials (Clarenon Press, 1977).
  18. A. M. Mamedov, "Optical properties (VUV region) of LiNbO3," Opt. Spectrosc. 56(6), 645 - 9 (1984).
  19. K. Buse, "Light-induced charge transport processes in photorefractive crystals. I. Models and experimental methods," Appl. Phys. B 64(3), 273 - 291 (1997). URL http://dx.doi.org/10.1007/s003400050175. [CrossRef]
  20. E. M. Bourim, C. W. Moon, S. W. Lee, and I. K. Yoo, "Investigation of pyroelectric electron emission from monodomain lithium niobate single crystals," Physica B 383(2), 171 - 182 (2006). URL http://dx.doi.org/10.1016/j.physb.2006.02.034. [CrossRef]
  21. G. I. Rozenman, "Photoinduced exoemission from lithium niobate," Sov. Phys. Solid State 30(8), 1340 - 1342 (1988).
  22. S. Kim, V. Gopalan, and A. Gruverman, "Coercive fields in ferroelectrics: A case study in lithium niobate and lithium tantalate," Appl. Phys. Lett. 80(15), 2740 - 2742 (2002). URL http://dx.doi.org/10.1063/1.1470247. [CrossRef]
  23. A. N. Morozovska, "Theoretical description of coercive field decrease in ferroelectric-semiconductors with charged defects," Ferroelectrics 317, 37 - 42 (2005). [CrossRef]
  24. N. Uchida, "Optical waveguide loaded with high refractive-index strip film," Appl. Opt. 15, 179 - 182 (1976). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited