OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 4 — Feb. 18, 2008
  • pp: 2387–2397

Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis

Michael J. Thorpe, David Balslev-Clausen, Matthew S. Kirchner, and Jun Ye  »View Author Affiliations

Optics Express, Vol. 16, Issue 4, pp. 2387-2397 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1258 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Broad-bandwidth, high-spectral-resolution optical detection of human breath has identified multiple important biomarkers correlated with specific diseases and metabolic processes. This optical-frequency-comb-based breath analysis system comes with excellent performance in all criteria: high detection sensitivity, ability to identify and distinguish a large number of analytes, and simultaneous, real-time information processing. We demonstrate a minimum detectable absorption of 8×10-10 cm-1, a spectral resolution of 800 MHz, and 200 nm of spectral coverage from 1.5 to 1.7 µm where strong and unique molecular fingerprints exist for many biomarkers. We present a series of breath measurements including stable isotope ratios of CO2, breath concentrations of CO, and the presence of trace concentrations of NH3 in high concentrations of H2O.

© 2008 Optical Society of America

OCIS Codes
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(140.4050) Lasers and laser optics : Mode-locked lasers
(300.1030) Spectroscopy : Absorption

ToC Category:

Original Manuscript: December 17, 2007
Revised Manuscript: January 18, 2008
Manuscript Accepted: January 23, 2008
Published: February 5, 2008

Virtual Issues
Vol. 3, Iss. 3 Virtual Journal for Biomedical Optics

Michael J. Thorpe, David Balslev-Clausen, Matthew S. Kirchner, and Jun Ye, "Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis," Opt. Express 16, 2387-2397 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. H. Risby and S. F. Solga, "Current status of clinical breath analysis," Appl. Phys. B. 85, 421-426 (2006). [CrossRef]
  2. W. Q. Cao and Y. X. Duan, "Breath analysis: Potential for clinical diagnosis and exposure assessment," Clin. Chem. 52, 800-811 (2006). [CrossRef] [PubMed]
  3. E. R. Crosson, K. N. Ricci, B. A. Richman, F. C. Chilese, T. G. Owano, R. A. Provencal, M. W. Todd, J. Glasser, A. A. Kachanov, B. A. Paldus, T. G. Spence, and R. A. Zare, "Stable Isotope ratios using cavity ring-down spectroscopy: Determination of 13C/12C for carbon dioxide in human breath," Anal. Chem. 74, 2003-2007 (2002). [CrossRef] [PubMed]
  4. A. A. Kosterev, A. L. Malinovsky, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baollargeon, A. L. Hutchinson, and A. Y. Cho, "Cavity ringdown spectroscopic detection of nitric oxide with a continuous-wave quantum-cascade laser," Appl. Opt. 40, 5522-5529 (2001). [CrossRef]
  5. S. Dill, J. J. Payne-James, J. J. Misiewicz, G. K. Grimble, K. McSwiggan, K. Pathak, A. J. Wood, C. M. Scrimgeour, and M. J. Rennie, "Evaluation of 13C-urea breath test in the detection of Heliobacter pylori and in monitoring the effect of tripotassium dicitratobismuthate in non-ulcer dyspepsia," Gut. 31, 1237-1241 (1990). [CrossRef] [PubMed]
  6. F. Di Francesco, R. Fuoco, M. G. Trivella, and A. Ceccarini, "Breath analysis: trends in techniques and clinical applications," Microchem. J. 79, 405-410 (2005). [CrossRef]
  7. R. F. Machado, et al., "Detection of lung cancer by sensor array analyses of exhaled breath," Am. J. Respir. Crit. Care Med. 171, 1286-1291 (2005). [CrossRef] [PubMed]
  8. W. L. Wood, D. J. Higbee, M. Gooldy, S. Glogowski, R. Fitzpatrick, R. J. Karalus, T. D. Wood, and D. J. Mangino, "Analysis of volatile metabolites by Gas Chromatography-Mass Spectrometry," Spectroscopy 21, 20-25 (2006).
  9. R. Polikar, R. Shinar, V. Honavar, L. Udpa, and M. D. Porter, "Detection and identification of odorants using an electronic nose," in Proceedings of IEEE 26th International Conference Acoustics, Speech and Signal Processing 5, 3137-3140 (2001).
  10. J. J. Scherer, J. B. Paul, A. O'Keefe, and R. J. Saykally, "Cavity Ringdown Laser Absorption Spectroscopy - History, Development, and Application to pulsed molecular beams," Chem. Rev. 97, 25-51 (1997). [CrossRef] [PubMed]
  11. J. Ye, L. S. Ma, and J. L. Hall, "Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy," J. Opt. Soc. Am. B. 15, 6-15 (1998). [CrossRef]
  12. D. Marinov, J. M. Rey, M. G. Muller, and M. W. Sigrist, "Spectroscopic investigation of methylated amines by a cavity-ringdown-based spectrometer," Appl. Opt. 46, 3981-3986 (2007). [CrossRef] [PubMed]
  13. J. Manne, O. Sukhorukov, W. Jager, and J. Tulip, "Pulsed quantum cascade laser-based cavity ring-down spectroscopy for ammonia detection in breath," Appl. Opt. 45, 9230-9237 (2006). [CrossRef] [PubMed]
  14. H. Dahnke, D. Kleine, P. Hering, and M. Mürtz, "Real-time monitoring of ethane in human breath using mid-infrared cavity leak-out spectroscopy," Appl. Phys. B 72, 971-975 (2001). [CrossRef]
  15. C. Patterson, L. C. McMillan, C. Longbottom, G. Gibson, M. J. Padgett, and K. D. Skeldon, "Portable optical spectroscopy for accurate analysis of ethane in exhaled breath," Meas. Sci. Technol. 18, 1459-1463 (2007). [CrossRef]
  16. K. D. Skeldon, L. C. McMillan, C. A. Wyse, S. D. Monk, G. Gibson, C. Patterson, T. France, C. Longbottom, and M. J. Padgett, "Application of laser spectoscopy for measurement of exhaled ethane in patients with lung cancer," Respir. Med. 100, 300-306 (2006). [CrossRef]
  17. T. Gherman and D. Romanini, "Mode-locked cavity-enhanced absorption spectroscopy," Opt. Express 10, 1033-1042 (2002). [PubMed]
  18. M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, "Broadband Cavity Ringdown Spectroscopy for Sensitive and Rapic Molecular Detection," Science. 311, 1595-1599 (2006). [CrossRef] [PubMed]
  19. M. J. Thorpe, D. D. Hudson, K. D. Moll, J. Lasri, and J. Ye, "Cavity-ringdown molecular spectroscopy based on an optical frequency comb at 1.45-1.65 µm," Opt. Lett. 32, 307-309 (2007). [CrossRef] [PubMed]
  20. S. A. Diddams, L. Hollberg, and V. Mbele, "Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb," Nature 445, 627-630 (2007). [CrossRef] [PubMed]
  21. C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hänsch, "Cavity enhanced Optical Vernier Spectroscopy, broad band, high resolution, high sensitivity," arXiv:0706.1582 (2007).
  22. T. Okuno, M. Hirano, T. Nakanishi, and M. Onishi, "Highly-nonlinear optical fibers and their applications," SEI Tech. Rev. 62, 34-40 (2006). http://www.sei.co.jp/tr_e/pdf/info/62-06.pdf.
  23. F. Tauser, F. Adler, and A. Leitenstorfer, "Widely tunable sub-30-fs pulses from acompact erbium-doped fiber source," Opt. Lett. 29, 516-518 (2004). [CrossRef] [PubMed]
  24. P. Maddaloni, P. Malara, G. Gagliardi, and P. De Natale, "Mid-infrared fibre-based optical comb," New J. Phys. 8, 262-269 (2006). [CrossRef]
  25. L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, "Ultrashort-pulse fiber ring lasers," Appl. Phys. B 65, 277-294 (1997). [CrossRef]
  26. S. Xiao and A. M. Weiner, "2-D wavelength demultiplexer with potential for 1000 channels in the C-band," Opt. Express 12, 2895-2902 (2004). [CrossRef] [PubMed]
  27. J. Poirson, F. Bretenaker, M. Vallet, and A. L. Floch, "Analytical and experimental study of ringing effects in a Fabry-Perot cavity. Application to the measurement of high finesses," J. Opt. Soc. Am. B 14, 2811-2817 (1997). [CrossRef]
  28. L. S. Rothman, et al., "The HITRAN 2004 molecular spectroscopic database," J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005). [CrossRef]
  29. L. Lundsberg-Nielsen, F. Hegelund, and F. M. Nicolaisen, "Analysis of the high-resolution of ammonia (14NH3) in the near-infrared region, 6400-6900 cm-1," J. Mol. Spectrosc. 162, 230-245 (1993). [CrossRef]
  30. E. H. Wahl, S. M. Tan, S. Koulikov, B. Kharlamov, C. R. Rella, E. R. Crosson, D. Biswell, and B. A. Paldus, "Ultra-sensitive ethylene post-harvest monitor based on cavity ring-down spectroscopy," Opt. Express 14, 1673-1684 (2006). [CrossRef] [PubMed]
  31. J. Cunnington and P. Hormbrey, "Breath analysis to detect recent exposure to carbon monoxide," Postgrad. Med. J. 78, 233-237 (2002). [CrossRef] [PubMed]
  32. K. K. Lehmann, et al., "High finesse optical resonator for cavity ring-down spectroscopy based upon Brewster's angle prism retroreflectors," U. S. Patent 5973864 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited