OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 4 — Feb. 18, 2008
  • pp: 2461–2468

Direct determination of photonic band structure for waveguiding modes in two-dimensional photonic crystals

Shin-ichiro Inoue, Shiyoshi Yokoyama, and Yoshinobu Aoyagi  »View Author Affiliations

Optics Express, Vol. 16, Issue 4, pp. 2461-2468 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (550 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We directly determine the experimental photonic band dispersion structure of waveguiding modes under the light line in a two-dimensional photonic crystal (2D PhC) waveguide by using angle-resolved attenuated total reflection spectroscopy. Resonance coupling between the external evanescent wave from total reflection within the prism and the waveguiding modes in the 2D PhC provides clear information on individual band components by resolving the angle (i.e., wave vector k) and photon energy. The experimentally determined photonic band structure, which is essential for understanding the novel light propagation properties of PhC systems with many degrees of freedom, agrees well with the band structure predicted by theory. Furthermore, we demonstrate the accuracy and suitability of this method by analyzing field distribution and eigen-photon-energy calculations for a model structure identical to the experimental arrangement of the prism and sample structure.

© 2008 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(130.2790) Integrated optics : Guided waves
(300.6490) Spectroscopy : Spectroscopy, surface
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(130.5296) Integrated optics : Photonic crystal waveguides
(240.5698) Optics at surfaces : Reflectance anisotropy spectroscopy

ToC Category:
Photonic Crystals

Original Manuscript: December 10, 2007
Revised Manuscript: February 1, 2008
Manuscript Accepted: February 4, 2008
Published: February 6, 2008

Shin-ichiro Inoue, Shiyoshi Yokoyama, and Yoshinobu Aoyagi, "Direct determination of photonic band structure for waveguiding modes in two-dimensional photonic crystals," Opt. Express 16, 2461-2468 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  2. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987). [CrossRef] [PubMed]
  3. S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, "Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal," Science 282, 274-276 (1998). [CrossRef] [PubMed]
  4. P. I. Borel, A. Harpøth, L. H. Frandsen, M. Kristensen, P. Shi, J. S. Jensen, and O. Sigmund, "Topology optimization and fabrication of photonic crystal structures," Opt. Express 12, 1996-2001 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-9-1996. [CrossRef] [PubMed]
  5. Y. Akahane, T. Asano, B. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003). [CrossRef] [PubMed]
  6. S. Foteinopoulou and C. M. Soukoulis, "Negative refraction and left-handed behavior in two-dimensional photonic crystals," Phys. Rev. B 67, 235107 (2003). [CrossRef]
  7. A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau, and S. Anand, "Negative refraction at infrared wavelengths in a two-dimensional photonic crystal," Phys. Rev. Lett. 93, 073902 (2004). [CrossRef] [PubMed]
  8. R. E. Slusher and B. J. Eggleton, Nonlinear Photonic Crystals, (Springer, Berlin, 2003).
  9. D. N. Christodoulides, F. Lederer, and Y. Silberberg, "Discretizing light behaviour in linear and nonlinear waveguide lattices," Nature 424, 817-823 (2003). [CrossRef] [PubMed]
  10. S. Inoue and Y. Aoyagi, "Design and fabrication of two-dimensional photonic crystals with predetermined nonlinear optical properties," Phys. Rev. Lett. 94, 103904 (2005). [CrossRef] [PubMed]
  11. S. Inoue and Y. Aoyagi, "Ultraviolet second-harmonic generation and sum-frequency mixing in two-dimensional nonlinear optical polymer photonic crystals," Jpn. J. Appl. Phys. 45, 6103-6107 (2006). [CrossRef]
  12. V. N. Astratov, D.M. Whittaker, I. S. Culshaw, R. M. Stevenson, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, "Photonic band-structure effects in the reflectivity of periodically patterned waveguides," Phys. Rev. B 60, R16255-R16258 (1999). [CrossRef]
  13. S. Inoue and Y. Aoyagi, "Photonic band structure and related properties of photonic crystal waveguides in nonlinear optical polymers with metallic cladding," Phys. Rev. B 69, 205109 (2004). [CrossRef]
  14. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001). [CrossRef] [PubMed]
  15. A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Z. Phys. 216, 398-410 (1968). [CrossRef]
  16. S. Inoue, K. Kajikawa, and Y. Aoyagi, "Dry-etching method for fabricating photonic-crystal waveguides in nonlinear-optical polymer," Appl. Phys. Lett. 82, 2966-2968 (2003). [CrossRef]
  17. S. Inoue and K. Kajikawa, "Inductivity coupled plasma etching to fabricate the nonlinear optical polymer photonic crystal waveguides," Mater. Sci. Eng. B 103, 170-176 (2003). [CrossRef]
  18. K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Trans. Antennas Propagat. AP-14, 302-307 (1966).
  19. A. Taflow, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House INC, Norwood, 1995).
  20. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited