OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 4 — Feb. 18, 2008
  • pp: 2469–2485

Effects of axial resolution improvement on optical coherence tomography (OCT) imaging of gastrointestinal tissues

Yu Chen, Aaron D. Aguirre, Pei-Lin Hsiung, Shu-Wei Huang, Hiroshi Mashimo, Joseph M. Schmitt, and James G. Fujimoto  »View Author Affiliations


Optics Express, Vol. 16, Issue 4, pp. 2469-2485 (2008)
http://dx.doi.org/10.1364/OE.16.002469


View Full Text Article

Enhanced HTML    Acrobat PDF (1597 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical coherence tomography (OCT) is an emerging medical imaging technology which generates high resolution, cross-sectional images in situ, without the need for excisional biopsy. Previous clinical studies using endoscopic OCT with standard 10–15 µm axial resolution have demonstrated its capability in diagnosing Barrett’s esophagus (BE) and high-grade dysplasia (HGD). Quantitative OCT image analysis has shown promise for detecting HGD in Barrett’s esophagus patients. We recently developed an endoscopic OCT system with an improved axial resolution of ~5 µm. The goal in this manuscript is to compare standard resolution OCT and ultrahigh resolution OCT (UHR-OCT) for image quality and computeraided detection using normal and Barrett’s esophagus. OCT images of gastrointestinal (GI) tissues were obtained using UHR-OCT (5.5 µm) and standard resolution OCT (13 µm). Image quality including the speckle size and sharpness was compared. Texture features of endoscopic OCT images from normal and Barrett’s esophagus were extracted using quantitative metrics including spatial frequency analysis and statistical texture analysis. These features were analyzed using principal component analysis (PCA) to reduce the vector dimension and increase the discriminative power, followed by linear discrimination analysis (LDA). UHR-OCT images of GI tissues improved visualization of fine architectural features compared to standard resolution OCT. In addition, the quantitative image feature analysis showed enhanced discrimination of normal and Barrett’s esophagus with UHR-OCT. The ability of UHR-OCT to resolve tissue morphology at improved resolution enables visualization of subtle features in OCT images, which may be useful in disease diagnosis. Enhanced classification of image features using UHR-OCT promises to help in the computer-aided diagnosis of GI diseases.

© 2008 Optical Society of America

OCIS Codes
(110.2960) Imaging systems : Image analysis
(110.4500) Imaging systems : Optical coherence tomography
(170.2150) Medical optics and biotechnology : Endoscopic imaging
(170.3880) Medical optics and biotechnology : Medical and biological imaging

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: October 12, 2007
Revised Manuscript: January 11, 2008
Manuscript Accepted: February 1, 2008
Published: February 6, 2008

Virtual Issues
Vol. 3, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Yu Chen, Aaron D. Aguirre, Pei-Lin Hsiung, Shu-Wei Huang, Hiroshi Mashimo, Joseph M. Schmitt, and James G. Fujimoto, "Effects of axial resolution improvement on optical coherence tomography (OCT) imaging of gastrointestinal tissues," Opt. Express 16, 2469-2485 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-4-2469


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  2. J.M. Schmitt, "Optical coherence tomography (OCT): a review," IEEE J. Sel. Top. Quantum Electron. 5, 1205-1215 (1999). [CrossRef]
  3. G.J. Tearney, M.E. Brezinski, B.E. Bouma, S.A. Boppart, C. Pitvis, J.F. Southern, and J.G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997). [CrossRef] [PubMed]
  4. A.M. Sergeev, V.M. Gelikonov, G.V. Gelikonov, F.I. Feldchtein, R.V. Kuranov, N.D. Gladkova, N.M. Shakhova, L.B. Suopova, A.V. Shakhov, I.A. Kuznetzova, A.N. Denisenko, V.V. Pochinko, Y.P. Chumakov, and O.S. Streltzova, "In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa," Opt. Express 1, 432-440 (1997). [CrossRef] [PubMed]
  5. B.E. Bouma, G.J. Tearney, C.C. Compton, and N.S. Nishioka, "High-resolution imaging of the human esophagus and stomach in vivo using optical coherence tomography," Gastrointest. Endosc. 51, 467-474 (2000). [CrossRef] [PubMed]
  6. M.V. Sivak, Jr., K. Kobayashi, J.A. Izatt, A.M. Rollins, R. Ung-Runyawee, A. Chak, R.C. Wong, G.A. Isenberg, and J. Willis, "High-resolution endoscopic imaging of the GI tract using optical coherence tomography," Gastrointest. Endosc. 51, 474-479 (2000). [CrossRef]
  7. X.D. Li, S.A. Boppart, J. Van Dam, H. Mashimo, M. Mutinga, W. Drexler, M. Klein, C. Pitris, M.L. Krinsky, M.E. Brezinski, and J.G. Fujimoto, "Optical coherence tomography: advanced technology for the endoscopic imaging of Barrett's esophagus," Endoscopy 32, 921-930 (2000). [CrossRef]
  8. G. Zuccaro, N. Gladkova, J. Vargo, F. Feldchtein, E. Zagaynova, D. Conwell, G. Falk, J. Goldblum, J. Dumot, J. Ponsky, G. Gelikonov, B. Davros, E. Donchenko, and J. Richter, "Optical coherence tomography of the esophagus and proximal stomach in health and disease," Am. J. Gastroenterol. 96, 2633-2639 (2001). [CrossRef] [PubMed]
  9. J.M. Poneros, S. Brand, B.E. Bouma, G.J. Tearney, C.C. Compton, and N.S. Nishioka, "Diagnosis of specialized intestinal metaplasia by optical coherence tomography," Gastroenterology 120, 7-12 (2001). [CrossRef] [PubMed]
  10. G. Isenberg, M.V. Sivak, A. Chak, R.C.K. Wong, J.E. Willis, B. Wolf, D.Y. Rowland, A. Das, and A. Rollins, "Accuracy of endoscopic optical coherence tomography in the detection of dysplasia in Barrett's esophagus: a prospective, double-blinded study," Gastrointest. Endosc. 62, 825-831 (2005). [CrossRef] [PubMed]
  11. J.A. Evans, J.M. Poneros, B.E. Bouma, J. Bressner, E.F. Halpern, M. Shishkov, G.Y. Lauwers, M. Mino-Kenudson, N.S. Nishioka, and G.J. Tearney, "Optical coherence tomography to identify intramucosal carcinoma and high-grade dysplasia in Barrett's esophagus," Clinical Gastroenterology and Hepatology 4, 38-43 (2006). [CrossRef] [PubMed]
  12. P.R. Pfau, M.V. Sivak, Jr., A. Chak, M. Kinnard, R.C. Wong, G.A. Isenberg, J.A. Izatt, A. Rollins, and V. Westphal, "Criteria for the diagnosis of dysplasia by endoscopic optical coherence tomography," Gastrointest. Endosc. 58, 196-202 (2003). [CrossRef] [PubMed]
  13. X. Qi, M.V. Sivak, G. Isenberg, J.E. Willis, and A.M. Rollins, "Computer-aided diagnosis of dysplasia in Barrett's esophagus using endoscopic optical coherence tomography," J. Biomed. Opt. 11, 044010 (2006). [CrossRef] [PubMed]
  14. X. Qi, D.Y. Rowland, M.V. Sivak, and A.M. Rollins, "Fractal analysis with classification tree for classification of dysplasia in Barrett's esophagus using multiple endoscopic optical coherence tomography images," Gastroenterology 130, A310-A310 (2006).
  15. W. Drexler, U. Morgner, F.X. Kartner, C. Pitris, S.A. Boppart, X.D. Li, E.P. Ippen, and J.G. Fujimoto, "In vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 24, 1221-1223 (1999). [CrossRef]
  16. W. Drexler, U. Morgner, R.K. Ghanta, F.X. Kärtner, J.S. Schuman, and J.G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nature Medicine 7, 502-507 (2001). [CrossRef] [PubMed]
  17. T.H. Ko, J.G. Fujimoto, J.S. Duker, L.A. Paunescu, W. Drexler, C.R. Baumal, C.A. Puliafito, E. Reichel, A.H. Rogers, and J.S. Schuman, "Comparison of ultrahigh- and standard-resolution optical coherence tomography for imaging macular hole pathology and repair," Ophthalmology 111, 2033-2043 (2004). [CrossRef] [PubMed]
  18. T.H. Ko, J.G. Fujimoto, J.S. Schuman, L.A. Paunescu, A.M. Kowalevicz, I. Hartl, W. Drexler, G. Wollstein, H. Ishikawa, and J.S. Duker, "Comparison of Ultrahigh- and Standard-Resolution Optical Coherence Tomography for Imaging Macular Pathology," Ophthalmology 112, 1922-1935 (2005). [CrossRef] [PubMed]
  19. M.J. Cobb, M.P. Upton, Y.C. Chen, D.J. MacDonald, J.H. Hwang, M.B. Kimmey, and X.D. Li, OCT Assessment of Subsquamous Barrett's Epithelium, in Biomedical Optics. 2006, Optical Society of America.
  20. A.R. Tumlinson, B. Povazay, L.P. Hariri, J. McNally, A. Unterhuber, B. Hermann, H. Sattmann, W. Drexler, and J.K. Barton, "In vivo ultrahigh-resolution optical coherence tomography of mouse colon with an achromatized endoscope," J. Biomed. Opt. 11, 064003 (2006). [CrossRef]
  21. P.L. Hsiung, L. Pantanowitz, A.D. Aguirre, Y. Chen, D. Phatak, T.H. Ko, S. Bourquin, S.J. Schnitt, S. Raza, J.L. Connolly, H. Mashimo, and J.G. Fujimoto, "Ultrahigh-resolution and 3-dimensional optical coherence tomography ex vivo imaging of the large and small intestines," Gastrointest. Endosc. 62, 561-574 (2005). [CrossRef] [PubMed]
  22. P.R. Herz, Y. Chen, A.D. Aguirre, J.G. Fujimoto, H. Mashimo, J. Schmitt, A. Koski, J. Goodnow, and C. Petersen, "Ultrahigh resolution optical biopsy with endoscopic optical coherence tomography," Opt. Express 12, 3532-3542 (2004). [CrossRef] [PubMed]
  23. Y. Chen, A.D. Aguirre, P. Hsiung, S. Desai, P.R. Herz, M. Pedrosa, Q. Huang, M. Figueiredo, S. Huang, A. Koski, J.M. Schmitt, J.G. Fujimoto, and H. Mashimo, "Ultrahigh resolution optical coherence tomography of Barrett's esophagus: preliminary descriptive clinical study correlating images with histology," Endoscopy 39, 599-605 (2007). [CrossRef] [PubMed]
  24. J.M. Schmitt, S.H. Xiang, and K.M. Yung, "Speckle in optical coherence tomography," J. Biomed. Opt. 4, 95-105 (1999). [CrossRef]
  25. K.W. Gossage, T.S. Tkaczyk, J.J. Rodriguez, and J.K. Barton, "Texture analysis of optical coherence tomography images: feasibility for tissue classification," J. Biomed. Opt. 8, 570-5 (2003). [CrossRef] [PubMed]
  26. K.W. Gossage, C.M. Smith, E.M. Kanter, L.P. Hariri, A.L. Stone, J.J. Rodriguez, S.K. Williams, and J.K. Barton, "Texture analysis of speckle in optical coherence tomography images of tissue phantoms," Physics in Medicine and Biology 51, 1563-1575 (2006). [CrossRef] [PubMed]
  27. D. Harwood, T. Ojala, M. Pietikainen, S. Kelman, and L. Davis, "Texture Classification by Center-Symmetrical Autocorrelation, Using Kullback Discrimination of Distributions," Pattern Recognition Letters 16, 1-10 (1995). [CrossRef]
  28. E. Gazi, J. Dwyer, P. Gardner, A. Ghanbari-Siahkali, A.P. Wade, J. Miyan, N.P. Lockyer, J.C. Vickerman, N.W. Clarke, J.H. Shanks, L.J. Scott, C.A. Hart, and M. Brown, "Applications of Fourier transform infrared microspectroscopy in studies of benign prostate and prostate cancer. A pilot study," Journal of Pathology 201, 99-108 (2003). [CrossRef] [PubMed]
  29. N. Stone, C. Kendall, N. Shepherd, P. Crow, and H. Barr, "Near-infrared Raman spectroscopy for the classification of epithelial pre-cancers and cancers," J. Raman Spectrosc. 33, 564-573 (2002). [CrossRef]
  30. T.C.B. Schut, R. Wolthuis, P.J. Caspers, and G.J. Puppels, "Real-time tissue characterization on the basis of in vivo Raman spectra," J. Raman Spectrosc. 33, 580-585 (2002). [CrossRef]
  31. A.J. Cameron and H.A. Carpenter, "Barrett's esophagus, high-grade dysplasia, and early adenocarcinoma: a pathological study," Am. J. Gastroenterol. 92, 586-591 (1997). [PubMed]
  32. J.A. Izatt, M.D. Kulkarni, H.-W. Wang, K. Kobayashi, and M.V. Sivak, Jr., "Optical coherence tomography and microscopy in gastrointestinal tissues," IEEE J. Sel. Top. Quantum Electron. 2, 1017-1028 (1996). [CrossRef]
  33. A.D. Aguirre, P. Hsiung, T.H. Ko, I. Hartl, and J.G. Fujimoto, "High-resolution optical coherence microscopy for high-speed, in vivo cellular imaging," Opt. Lett. 28, 2064-2066 (2003). [CrossRef] [PubMed]
  34. Y. Chen, S.W. Huang, A.D. Aguirre, and J.G. Fujimoto, "High-resolution line-scanning optical coherence microscopy," Opt. Lett. 32, 1971-1973 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited