OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 4 — Feb. 18, 2008
  • pp: 2520–2527

Nonlinearly broadened phase-modulated continuous-wave laser frequency combs characterized using DPSK decoding

Chen-Bin Huang, Sang-Gyu Park, Daniel E. Leaird, and Andrew M. Weiner  »View Author Affiliations


Optics Express, Vol. 16, Issue 4, pp. 2520-2527 (2008)
http://dx.doi.org/10.1364/OE.16.002520


View Full Text Article

Enhanced HTML    Acrobat PDF (226 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

9.953 GHz phase-modulated continuous-wave laser combs are spectrally broadened via nonlinear propagation in normal and anomalous dispersion media and experimentally characterized using a differential phase shift keying (DPSK) decoder. DPSK bit-error rate data are in qualitative agreement with radio-frequency spectrum analyzer measurements.

© 2008 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(060.7140) Fiber optics and optical communications : Ultrafast processes in fibers
(320.7110) Ultrafast optics : Ultrafast nonlinear optics

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: December 6, 2007
Revised Manuscript: January 31, 2008
Manuscript Accepted: February 5, 2008
Published: February 8, 2008

Citation
Chen-Bin Huang, Sang-Gyu Park, Daniel E. Leaird, and Andrew M. Weiner, "Nonlinearly broadened phase-modulated continuous-wave laser frequency combs characterized using DPSK decoding," Opt. Express 16, 2520-2527 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-4-2520


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. A. Linke and A. H. Gnauck, "High-capacity coherent lightwave systems," J. Lightwave Technol. 6, 1750-1769 (1988). [CrossRef]
  2. H. Toba, K. Oda, and K. Nosu, "Design and performance of FSK-direct detection scheme for optical FDM systems," J. Lightwave Technol. 9, 1335-1343 (1991). [CrossRef]
  3. T. Chikama, S. Watanabe, T. Naito, H. Onaka, T. Kiyonaga, Y. Onoda, H. Miyata, M. Suyama, M. Seino, and H. Kuwahara, "Modulation and demodulation techniques in optical heterodyne PSK transmission systems," J. Lightwave Technol. 8, 309-325 (1990). [CrossRef]
  4. A. H. Gnauck and P. J. Winzer, "Optical phase-shift-keyed transmission," J. Lightwave Technol. 23, 115-130 (2005). [CrossRef]
  5. M. Mlejnek, "Balanced differential phase-shift keying detector performance: an analytical study," Opt. Lett. 31, 2266-2268 (2006). [CrossRef] [PubMed]
  6. S. Weisser, S. Ferber, L. Raddatz, R. Ludwig, A. Benz, C. Boerner, and H. G. Weber, "Single- and alternating polarization 170 Gb/s transmission up to 4000 km using dispersion-managed fiber and all-Raman amplification," IEEE Photon. Technol. Lett. 18, 1320-1322 (2006). [CrossRef]
  7. H. G. Weber, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, V. Marembert, C. Boerner, F. Futami, S. Watanabe, and C. Schubert, "Single channel 1.28 T/s and 2.56 Tb/s DQPSK transmission," Electron. Lett. 42, 178-179 (2006). [CrossRef]
  8. H. G. Weber, R. Ludwig, S. Ferber, C. Schmidt-Langhorst, M. Kroh, V. Marembert, C. Boerner, and C. Schubert, "Ultrahigh-speed OTDM-transmission technology," J. Lightwave Technol. 24, 4616-4627 (2006). [CrossRef]
  9. F. Quinlan, S. Gee, S. Ozharar, and P. J. Delfyett, "Ultralow-jitter and -amplitude-noise semiconductor-based actively mode-locked laser," Opt. Lett. 31, 2870-2872 (2006). [CrossRef] [PubMed]
  10. S. Gee, S. Ozharar, F. Quinlan, J. J. Plant, P. W. Juodawlkis, and P. J. Delfyett, "Self-stabilization of an actively mode-locked semiconductor-based fiber-ring laser for ultralow jitter," IEEE Photon. Technol. Lett. 19, 498-500 (2007). [CrossRef]
  11. K. R. Tamura, H. Kubota and M. Nakazawa, "Fundamentals of stable continuum generation at high repetition rate," IEEE J. Quantum Electron. 36, 773-779 (2000). [CrossRef]
  12. F. Futami and K. Kikuchi, "Low-noise multiwavelength transmitter using spectrum-sliced supercontinuum generated from a normal group-velocity dispersion fiber," IEEE Photon. Technol. Lett. 13, 73-75 (2001). [CrossRef]
  13. H. Sotobayashi and K. Kitayama, "Observation of phase conservation in multiwavelength binary phase shift-keying pulse-sequence generation at 10 Gbits_s by use of a spectrum-sliced supercontinuum in an optical fiber," Opt. Lett. 24, 1820-1822 (1999). [CrossRef]
  14. T. Kuri, T. Nakasyotani, H. Toda and K. Kitayama, "Characterization of supercontinuum light source for WDM millimeter-wave-band radio-over-fiber systems," IEEE Photon. Technol. Lett. 17, 1274-1276 (2005). [CrossRef]
  15. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstructure fiber," Phys. Rev. Lett. 90, 113904 (2003). [CrossRef] [PubMed]
  16. N. R. Newbury, B. R. Washburn, K. L. Corwin, and R. S. Windeler, "Noise amplification during supercontinuum generation in microstructure fiber," Opt. Lett. 28, 944-946 (2003). [CrossRef] [PubMed]
  17. D. M. Baney and W. V. Sorin, "High resolution optical frequency analysis," in Fiber Optic Test and Measurement, D. Derickson, ed., (Prentice Hall, 1998), pp.169-219.
  18. H. Murata, A. Morimoto, T. Kobayashi, and S. Yamamoto, "Optical pulse generation by electrooptic-modulation method and its application to integrated ultrashort pulse generators," IEEE J. Sel. Top. Quantum Electron. 6, 1325-1331 (2000). [CrossRef]
  19. T. Sakamoto, T. Kawanishi, and M. Izutsu, "Asymptotic formalism for ultraflat optical frequency comb generation using a Mach-Zehnder modulator," Opt. Lett. 32, 1515-1517 (2007). [CrossRef] [PubMed]
  20. C.-B. Huang, Z. Jiang, D. E. Leaird, and A. M. Weiner, "High-rate femtosecond pulse generation via line-by-line processing of a phase-modulated CW laser frequency comb," Electron. Lett. 42, 1114-1115 (2006). [CrossRef]
  21. J. van Howe, J. H. Lee, and C. Xu, "Generation of 3.5 nJ femtosecond pulses from a continuous-wave laser without mode-locking," Opt. Lett. 32, 1408-1410 (2007). [CrossRef] [PubMed]
  22. Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, "Optical arbitrary waveform processing of more than 100 spectral comb lines," Nat. Photonics 1, 463-467 (2007). [CrossRef]
  23. D. Miyamoto, K. Mandai, T. Kurokawa, S. Takeda, T. Shioda, and H. Tsuda, "Waveform-controllable optical pulse generator using an optical pulse synthesizer," IEEE Photon. Technol. Lett. 18, 721-723 (2006). [CrossRef]
  24. N. K. Fontaine, R. P. Scott, J. Cao, A. Karalar, W. Jiang, K. Okamoto, J. P. Heritage, B. H. Kolner, and S. J. B. Yoo, "32 phase X 32 amplitude optical arbitrary waveform generation," Opt. Lett. 32, 865-867 (2007). [CrossRef] [PubMed]
  25. S. V. Chernikov and P. V. Mamyshev, "Femtosecond soliton propagation in fibers with slowly decreasing dispersion," J. Opt. Soc. Am. B 8,1633-1641 (1991). [CrossRef]
  26. J. J. O. Pires and J. R. F. da Rocha, "Performance analysis of DPSK direct detection optical systems in the presence of interferometric intensity noise," J. Lightwave Technol. 10, 1722-1730 (1992). [CrossRef]
  27. D. von der Linde, "Characterization of the noise in continuously operating mode-locked lasers," Appl. Phys. B 39, 201-217 (1986). [CrossRef]
  28. K. R. Tamura and M. Nakazawa, "Femtosecond soliton generation over a 32-nm wavelength range using a dispersion-flattened dispersion-decreasing fiber," IEEE Photon. Technol. Lett. 11, 319-321 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited