OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 4 — Feb. 18, 2008
  • pp: 2578–2583

Imaging by a sub-wavelength metallic lens with large field of view

Shaoyun Yin, Chongxi Zhou, Xiangang Luo, and Chunlei Du  »View Author Affiliations

Optics Express, Vol. 16, Issue 4, pp. 2578-2583 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (836 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The characteristics of the phase retardations and the invariability against the incident angles are investigated when light enters the rectangular holes with different sizes perforated on metallic film. A kind of metallic structure with a great potential in imaging is brought forward. The finite difference time domain (FDTD) method and the Rayleigh-Sommerfeld diffraction integrals are used to testify the imaging ability at different incident angles by examining the electric field on focal plane. The calculation results indicate that a quite large view of field lens can be achieved by increasing the number of the holes per unit area with the mentioned structure. A metallic structured lens with a 280 µm aperture and 240 µm focal length is designed and the view angle range of ±15° can be achieved.

© 2008 Optical Society of America

OCIS Codes
(040.3060) Detectors : Infrared
(050.1970) Diffraction and gratings : Diffractive optics
(110.0110) Imaging systems : Imaging systems
(260.3910) Physical optics : Metal optics
(310.0310) Thin films : Thin films

ToC Category:
Diffraction and Gratings

Original Manuscript: November 6, 2007
Revised Manuscript: December 20, 2007
Manuscript Accepted: January 3, 2008
Published: February 11, 2008

Shaoyun Yin, Chongxi Zhou, Xiangang Luo, and Chunlei Du, "Imaging by a sub-wavelength metallic lens with large field of view," Opt. Express 16, 2578-2583 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. J. Lezec, A. Degiron., E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002). [CrossRef] [PubMed]
  2. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167,401 (2003). [CrossRef]
  3. C. Wang, C. Du, and X. Luo, "Refining the model of light diffraction from a subwavelength slit surrounded by grooves on a metallic film," Phys. Rev. B 74, 245,403 (2006).
  4. L. Yu, D. Lin,  et al., "Physical origin of directional beaming emitted from a subwavelength slit," Phys. Rev. B 71, 041,405 (2005). [CrossRef]
  5. F. J. García-Vidal, L. Martín-Moreno, H. J. Lezec, and T. W. Ebbesen, "Focusing light with a single subwavelength aperture flanked by surface corrugations," Appl. Phys. Lett. 83, 4500-4502 (2003). [CrossRef]
  6. A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Gratingless enhanced microwave transmission through a subwavelength aperture in a thick metal plate," Appl. Phys. Lett. 81, 4661-4663 (2002). [CrossRef]
  7. H. Shi., C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, "Beam manipulating by metallic nano-slits with variant widths," Opt. Express 13, 6815-6820 (2005). [CrossRef] [PubMed]
  8. Z. Sun, and H. K. Kim, "Refractive transmission of light and beam shaping with metallic nano-optic lenses," Appl. Phys. Lett. 85, 642-644 (2004). [CrossRef]
  9. J. R. Krenn, "Nanoparticle waveguides: Watching energy transfer," Nat. Mater. 2, 210-211 (2003). [CrossRef] [PubMed]
  10. S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, "Waveguiding in surface plasmon polariton band gap structures," Phys. Rev. Lett. 86, 3008-3011 (2001). [CrossRef] [PubMed]
  11. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A.G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003) [CrossRef] [PubMed]
  12. S. A. Maier, P. E. Barclay, T. J. Johnson, M. D. Friedman, and O. Painter, "Low-loss fiber accessible plasmon waveguide for planar energy guiding and sensing," Appl. Phys. Lett. 84, 3990-3992 (2004). [CrossRef]
  13. S. A. Maier, P. G. Kik, and H. A. Atwater, "Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss," Appl. Phys. Lett. 81, 1714-1716 (2002). [CrossRef]
  14. J. M. Brok, and H. P. Urbach, "Extraordinary transmission through 1, 2 and 3 holes in a perfect conductor, modelled by a mode expansion technique," Opt. Express 14, 2552-2572 (2006). [CrossRef] [PubMed]
  15. K. Q. Zhang, and D. J. Li, Electromagnetic theory for microwaves and optoelectronics (Publishing House of Elecronics Industry, Peking, 2001).
  16. M. Born, and E. Wolf, Principles of optics, 7th ed. (Press of Cambridge University, Cambridge, 1999)

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited