OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 4 — Feb. 18, 2008
  • pp: 2646–2652

Tunable-focus liquid microlens array using dielectrophoretic effect

Hongwen Ren and Shin-Tson Wu  »View Author Affiliations


Optics Express, Vol. 16, Issue 4, pp. 2646-2652 (2008)
http://dx.doi.org/10.1364/OE.16.002646


View Full Text Article

Enhanced HTML    Acrobat PDF (121 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A tunable-focus liquid microlens array based on dielectrophoretic effect was demonstrated. In a lens cell, two immiscible dielectric liquids but with different dielectric constants are sandwiched between electrodes. One electrode has a holed pattern while the other electrode is continuous. The applied voltage generates an inhomogeneous electric field near the hole regions. Owing to such an electric field, the generated dielectric force would separate the low dielectric liquid into many pieces and each piece is pushed to its neighboring hole. After balance, the droplet array is formed in the contracting state surrounded by the high dielectric constant liquid. Each droplet exhibits a lens character. When the voltage is removed, the droplets relax slightly but still keep a certain contact angle. Reactivating the cell will again enforce the droplets to reshape from relaxing to contracting states and, therefore, changing the focal length. Such a lens cell can be fabricated easily and its response time is reasonably fast. Its potential applications in image processing and zoom lens are emphasized.

© 2008 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(220.3630) Optical design and fabrication : Lenses
(230.2090) Optical devices : Electro-optical devices

ToC Category:
Adaptive Optics

History
Original Manuscript: January 3, 2008
Revised Manuscript: February 7, 2008
Manuscript Accepted: February 11, 2008
Published: February 12, 2008

Virtual Issues
Vol. 3, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Hongwen Ren and Shin-Tson Wu, "Tunable-focus liquid microlens array using dielectrophoretic effect," Opt. Express 16, 2646-2652 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-4-2646


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Nose and S. Sato, "Liquid-crystal microlens with a non-uniform electric field," Liq. Cryst. 5, 1425-1433 (1989). [CrossRef]
  2. N. A. Riza and M. C. Dejule, "Three-terminal adaptive nematic liquid crystal lens device," Opt. Lett. 19, 1013-1015 (1994). [CrossRef] [PubMed]
  3. H. Ren, Y. H. Fan, and S. T. Wu, "Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals," Appl. Phys. Lett. 83, 1515-1517 (2003). [CrossRef]
  4. H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, "Tunable-focus flat liquid crystal spherical lens," Appl. Phys. Lett. 84, 4789-4791 (2004). [CrossRef]
  5. G. Li, P. Valley, M. S. Giridhar, D. L. Mathine, G. Meredith, J. N. Haddock, B. Kippelen, and N. Peyghambarian, "Large-aperture switchable thin diffractive lens with interleaved electrode patterns," Appl. Phys. Lett. 89, 141120 (2006). [CrossRef]
  6. N. Chronis, G. L. Liu, K. H. Jeong, and L. P. Lee, "Tunable liquid-filled microlens array integrated with microfluidic network," Opt. Express 11, 2370-2378 (2003). [CrossRef] [PubMed]
  7. K. S. Hong, J. Wang, A. Sharonov, D. Chandra, J. Aizenberg, and S. Yang, "Tunable microfluidic optical devices with an integrated microlens array," J. Micromech. Microeng. 16, 1660-1666 (2006). [CrossRef]
  8. J. Chen, W. Wang, J. Fang, and K. Varahramtan, "Variable-focusing microlens with microfluidic chip," J. Micromech. Microeng. 14, 675-680 (2004). [CrossRef]
  9. H. Ren and S. T. Wu, "Variable-focus liquid lens," Opt. Express 15, 5931-5936 (2007). [CrossRef] [PubMed]
  10. L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, "Adaptive liquid microlenses activated by stimuli-responsive hydrogels," Nature 442, 551-554 (2006). [CrossRef] [PubMed]
  11. T. Krupenkin, S. Yang, and P. Mach, "Tunable liquid microlens," Appl. Phys. Lett. 82, 316-318 (2003). [CrossRef]
  12. S. Kuiper and B. H. W. Hendriks, "Variable-focus liquid lens for miniature cameras," Appl. Phys. Lett. 85, 1128-1130 (2004). [CrossRef]
  13. M. Vallet, B. Berge, and L. Vovelle, "Electrowetting of water and aqueous solutions on poly(ethylene terephthalate) insulating films," Polymer 37, 2465-2470 (1996). [CrossRef]
  14. C. C. Cheng and J. A. Yeh, "Dielectrically actuated liquid lens," Opt. Express 15, 7140-7145 (2007). [CrossRef] [PubMed]
  15. S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, "Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals," Jpn. J. Appl. Phys. 43, 7634-7638 (2004). [CrossRef]
  16. H. Ren, Y. H. Lin, and S. T. Wu, "Adaptive lens using liquid crystal concentration redistribution," Appl. Phys. Lett. 88, 191116 (2006). [CrossRef]
  17. C. C. Cheng, C. A. Chang, and J. A. Yeh, "Variable focus dielectric liquid lens," Opt. Express 14, 4101-4106 (2006). [CrossRef] [PubMed]
  18. Http://web.mit.edu/6.013_book/www/chapter11/11.9.html
  19. R. A. Hayes and B. J. Feenstra, "Video-speed electronic paper based on electrowetting," Nature 425, 383-385 (2003). [CrossRef] [PubMed]
  20. S. Vafaei and M. Z. Podowski, "Theoretical analysis on the effect of liquid droplet geometry on contact angle," Nucl. Eng. Des. 235, 1293-1301 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MPG (756 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited