OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 4 — Feb. 18, 2008
  • pp: 2720–2739

Multicolor multipartite entanglement produced by vector four-wave mixing in a fiber

C. J. McKinstrie, S. J. van Enk, M. G. Raymer, and S. Radic  »View Author Affiliations


Optics Express, Vol. 16, Issue 4, pp. 2720-2739 (2008)
http://dx.doi.org/10.1364/OE.16.002720


View Full Text Article

Enhanced HTML    Acrobat PDF (273 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Multipartite entanglement is a resource for quantum communication and computation. Vector four-wave mixing (FWM) in a fiber, driven by two strong optical pumps, couples the evolution of four weak optical sidebands (modes). Depending on the fiber dispersion and pump frequencies, the mode frequencies can be similar (separated by less than 1 THz) or dissimilar (separated by more than 10 THz). In this report, the discrete- and continuous-variable entanglement produced by vector FWM is studied in detail. Formulas are derived for the variances of, and correlations between, the mode quadratures and photon numbers. These formulas and related results show that the modes are four-partite entangled.

© 2008 Optical Society of America

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(270.5290) Quantum optics : Photon statistics
(270.6570) Quantum optics : Squeezed states

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: November 15, 2007
Revised Manuscript: January 29, 2008
Manuscript Accepted: February 2, 2008
Published: February 12, 2008

Citation
C. J. McKinstrie, S. J. van Enk, M. G. Raymer, and S. Radic, "Multicolor multipartite entanglement produced by vector four-wave mixing in a fiber," Opt. Express 16, 2720-2739 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-4-2720


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Schrödinger, "Die gegenwärtige Situation in der Quantenmechanik," Naturwiss. 28, 807-812, 823-828 and 844-849 (1928).. J. S. Bell, Speakable and Unspeakable in Quantum Mechanics, 2nd Ed. (Cambridge University Press, 2004).
  2. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000). [CrossRef]
  3. S. L. Braunstein and A. K. Pati, Quantum Information with Continuous Variables (Kluwer Academic Press, 2003).
  4. C. H. Bennett and S. J. Wiesner, "Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states," Phys. Rev. Lett. 69, 2881-2884 (1992).
  5. K. Mattle, H. Weinfurter, P. G. Kwiat and A. Zeilinger, "Dense coding in experimental quantum communications," Phys. Rev. Lett. 76, 4656-4659 (1996). [CrossRef] [PubMed]
  6. S. L. Braunstein and H. J. Kimble, "Dense coding for continuous variables," Phys. Rev. A 61, 042302 (2000). [CrossRef] [PubMed]
  7. X. Li, Q. Pan, J. Jing, J. Zhang, C. Xie and K. Peng, "Quantum dense coding exploiting a bright Einstein-Podolsky-Rosen beam," Phys. Rev. Lett. 88, 047904 (2002). [CrossRef]
  8. J. Zhang, C. Xie and K. Peng, "Controlled dense coding for continuous variables using three-partite entangled states," Phys. Rev. A 66, 032318 (2002). [CrossRef] [PubMed]
  9. J. Jing, J. Zhang, Y. Fan, F. Zhao, C. Xie and K. Peng, "Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables," Phys. Rev. Lett. 90, 167903 (2003). [CrossRef]
  10. A. K. Ekert, "Quantum cryptography based on Bell’s theorem," Phys. Rev. Lett. 67, 661-663 (1991). [CrossRef] [PubMed]
  11. T. Jennewein, C. Simon, G. Weihs, H. Weinfurter and A. Zeilinger, "Quantum cryptography with entangled photons," Phys. Rev. Lett. 84, 4729-4732 (2000). [CrossRef] [PubMed]
  12. D. S. Naik, C. G. Peterson, A. G. White, A. J. Berglund and P. G. Kwiat, "Entangled state quantum cryptography: Eavesdropping on the Ekert protocol," Phys. Rev. Lett. 84, 4733-4736 (2000). [CrossRef] [PubMed]
  13. W. Tittel, J. Brendel, H. Zbinden and N. Gisin, "Quantum cryptography using entangled photons in energy-time Bell states," Phys. Rev. Lett. 84, 4737-4740 (2000). [CrossRef] [PubMed]
  14. S. Gröblacher, T. Jennewein, A. Varizi, G. Weihs and A. Zeilinger, "Experimental quantum cryptography with qutrits," New J. Phys. 8, 75 (2006). [CrossRef] [PubMed]
  15. R. Raussendorf and H. J. Briegel, "A one-way quantum computer," Phys. Rev. Lett. 86, 5188-5191 (2001). [CrossRef]
  16. M. A. Nielsen, "Optical quantum computing using cluster states," Phys. Rev. Lett. 93, 040503 (2004). [CrossRef] [PubMed]
  17. P. Walther, K. J. Resch, T. Rudolph, E. Schenk, H. Weinfurter, V. Vedral, M. Aspelmeyer and A. Zeilinger, "Experimental one-way quantum computing," Nature 434, 169-176 (2005). [CrossRef] [PubMed]
  18. N. C. Menicucci, P. van Loock, M. Gu, C. Weedbrook, T. C. Ralph and M. A. Nielsen, "Universal quantum computation with continuous-variable cluster states," Phys. Rev. Lett. 97, 110501 (2006). [CrossRef] [PubMed]
  19. C. H. Bennett, G. Brassard, C. Crepeau, R. Josza, A. Peres and W. K. Wootters, "Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels," Phys. Rev. Lett. 70, 1895-1899 (1993). [CrossRef] [PubMed]
  20. D. Bouwmeester, J.W. Pan, K. Mattle, M. Eibl, H. Weinfurter and A. Zeilinger, "Experimental quantum teleportation," Nature 390, 575-579 (1997). [CrossRef] [PubMed]
  21. S. L. Braunstein and H. J. Kimble, "Teleportation of continuous quantum variables," Phys. Rev. Lett. 80, 869-872 (1998). [CrossRef]
  22. A. Furusawa, J. L. Sorensen, S. J. Braunstein, C. A. Fuchs, H. J. Kimble and E. S. Polzik, "Unconditional quantum teleportation," Science 282, 706-709 (1998). [CrossRef]
  23. W. P. Bowen, N. Treps, B. C. Buchler, R. Schnabel, T. C. Ralph, H. A. Bachor, T. Symul and P. K. Lam, "Experimental investigation of continuous-variable quantum teleportation," Phys. Rev. A 67, 032302 (2003). [CrossRef] [PubMed]
  24. T. C. Zhang, K. W. Goh, C. W. Chou, P. Lodahl and H. J. Kimble, "Quantum teleportation of light beams," Phys. Rev. A 67, 033802 (2003). [CrossRef]
  25. P. van Loock and S. L. Braunstein, "Multipartite entanglement for continuous variables: A quantum teleportation network," Phys. Rev. Lett. 84, 3482-3485 (2000). [CrossRef]
  26. T. Aoki, N. Takei, H. Yonezawa, K. Wakui, T. Hiraoka and A. Furusawa, "Experimental creation of a fully inseparable tripartite continuous-variable state," Phys. Rev. Lett. 91, 080404 (2003). [CrossRef] [PubMed]
  27. A. M. Lance, T. Symul, W. P. Bowen, B. C. Sanders and P. K. Lam, "Tripartite quantum state sharing," Phys. Rev. Lett. 92, 177903 (2004). [CrossRef] [PubMed]
  28. H. Yonezawa, T. Aoki and A. Furusawa, "Demonstration of a quantum teleportation network for continuous variabes," Nature 431, 430-434 (2004). [CrossRef] [PubMed]
  29. D. Bouwmeester, J. W. Pan, M. Daniell, H. Weinfurter and A. Zeilinger, "Observation of three-photon Greenburger-Horne-Zeilinger entanglement," Phys. Rev. Lett. 82, 1345-1349 (1999). [CrossRef] [PubMed]
  30. J. W. Pan, M. Daniell, S. Gasparoni, G. Weihs and A. Zeilinger, "Experimental demonstration of four-photon entanglement and high-fidelity teleportation," Phys. Rev. Lett. 86, 4435-4438 (2001). [CrossRef]
  31. N. Kiesel, C. Schmid, U. Weber, G. Toth, O. Guhne, R. Ursin and H. Weinfurter, "Experimental analysis of a four-qubit photon cluster state," Phys. Rev. Lett. 95, 210502 (2005). [CrossRef] [PubMed]
  32. O. Gl¨ockl, S. Lorenz, C. Marquardt, J. Heersink, M. Brownnutt, C. Silberhorn, Q. Pan, P. van Loock, N. Korolkova and G. Leuchs, "Experiment towards continuous-variable entanglement swapping: Highly correlated four-partite quantum state," Phys. Rev. A 68, 012319 (2003). [CrossRef] [PubMed]
  33. X. Su, A. Tan, X. Jia, J. Zhang, C. Xie and K. Peng, "Experimental preparation of quadripartite cluster and Greenberger-Horne-Zeilinger entangled states for continuous variables," Phys. Rev. Lett. 98, 707502 (2007). [CrossRef]
  34. D. C. Burnham and D. L. Weinberg, "Observation of simultaneity in parametric production of optical photon pairs," Phys. Rev. Lett. 25, 84-87 (1970). [CrossRef]
  35. P. G. Kwiat, K. Mattle, H. Weinfurter and A. Zeilinger, A. V. Sergienko and Y. Shih, "New high-intensity source of polarization-entangled photon pairs," Phys. Rev. Lett. 75, 4337-4341 (1995). [CrossRef]
  36. L. A. Wu, H. J. Kimble, J. L. Hall and H. Wu, "Generation of squeezed states by parametric down conversion," Phys. Rev. Lett. 57, 2520-2523 (1986). [CrossRef] [PubMed]
  37. A. Ferraro, M. G. A. Paris, M. Bondani, A. Allevi, E. Puddu and A. Andreoni, "Three-mode entanglement by interlinked nonlinear interactions in optical ?(2) media," J. Opt. Soc. Am. B 21, 1241-1249 (2004). [CrossRef] [PubMed]
  38. A. V. Rodionov and A. S. Chirkin, "Entangled photon states in consecutive nonlinear optical interactions," JETP Lett. 79, 253-256 (2004). [CrossRef]
  39. O. Pfister, S. Feng, G. Jennings, R. Pooser and D. Xie, "Multipartite continuous-variable entanglement from concurrent nonlinearities," Phys. Rev. A 70, 020302R (2004). [CrossRef]
  40. R. C. Pooser and O. Pfister, "Observation of triply coincident nonlinearities in periodically poled KTiOPO4," Opt. Lett. 30, 2635-2637 (2005). [CrossRef]
  41. M. Bondani, A. Allevi, E. Gevinti, A. Agliati and A. Andreoni, "3D phase-matching conditions for the generation of entangled triplets by ?(2) interlinked interactions," Opt. Express 14, 9838-9843 (2006). [CrossRef] [PubMed]
  42. M. Fiorentino, P. L. Voss, J. E. Sharping and P. Kumar, "All-fiber photon-pair source for quantum communications," IEEE Photon. Technol. Lett. 14, 983-985 (2002). [CrossRef] [PubMed]
  43. J. E. Sharping, J. Chen, X. Li, P. Kumar, "Quantum-correlated twin photons from microstructure fiber," Opt. Express 12, 3086-3094 (2004). [CrossRef]
  44. H. Takesue and K. Inoue, "Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop," Phys. Rev. A 70, 031802R (2004). [CrossRef] [PubMed]
  45. J. G. Rarity, J. Fulconis, J. Duligall, W. J. Wadsworth and P. S. J. Russell, "Photonic crystal fiber source of correlated photon pairs," Opt. Express 13, 534-544 (2005). [CrossRef]
  46. C. J. McKinstrie, J. D. Harvey, S. Radic and M. G. Raymer, "Translation of quantum states by four-wave mixing in fibers," Opt. Express 13, 9131-9142 (2005). [CrossRef] [PubMed]
  47. C. J. McKinstrie, S. Radic and A. R. Chraplyvy, "Parametric amplifiers driven by two pump waves," IEEE J. Sel. Top. Quantum Electron. 8, 538-547 (2002). [CrossRef] [PubMed]
  48. C. J. McKinstrie, S. Radic and C. Xie, "Parametric instabilities driven by orthogonal pump waves in birefringent fibers," Opt. Express 11, 2619-2633 (2003). [CrossRef]
  49. C. J. McKinstrie, S. Radic and M. G. Raymer, "Quantum noise properties of parametric amplifiers driven by two pump waves," Opt. Express 12, 5037-5066 (2004). [CrossRef] [PubMed]
  50. C. J. McKinstrie and M. G. Raymer, "Four-wave mixing cascades near the zero-dispersion frequency," Opt. Express 14, 9600-9610 (2006). [CrossRef] [PubMed]
  51. C. J. McKinstrie, S. Radic, M. G. Raymer and L. Schenato, "Unimpaired phase-sensitive amplification by vector four-wave mixing near the zero-dispersion frequency," Opt. Express 15, 2178-2189 (2007). [CrossRef] [PubMed]
  52. C. J. McKinstrie and S. Radic, "Phase-sensitive amplification in a fiber," Opt. Express 12, 4973-4979 (2004). [CrossRef] [PubMed]
  53. J. Fan and A. Migdall, "Generation of cross-polarized photon pairs in a microstructure fiber with frequencyconjugate laser pump pulses," Opt. Express 13, 5777-5782 (2005). [CrossRef] [PubMed]
  54. S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, Q. Lin and G. P. Agrawal, "Record performance of a parametric amplifier constructed with highly-nonlinear fiber," Electron. Lett. 39, 838-839 (2003). [CrossRef] [PubMed]
  55. Z. G. Lu, P. J. Bock, J. R. Liu, F. G. Sun and T. J. Hall, "All-optical 1550 to 1310 nm wavelength converter," Electron. Lett. 42, 937-938 (2006). [CrossRef]
  56. W. H. Reeves, J. C. Knight, P. S. J. Russell and P. J. Roberts, "Demonstration of ultra-flattened dispersion in photonic crystal fibers," Opt. Express 10, 609-613 (2002). [CrossRef]
  57. K. P. Hansen, "Dispersion flattened hybrid-core nonlinear photonic crystal fiber," Opt. Express 11, 1503-1509 (2003). [PubMed]
  58. J.M. Manley and H. E. Rowe, "Some general properties of nonlinear elements—Part I. General energy relations," Proc. IRE 44, 904-913 (1956). [CrossRef] [PubMed]
  59. M. T. Weiss, "Quantum derivation of energy relations analogous to those for nonlinear rectances," Proc. IRE 45, 1012-1013 (1957). [CrossRef]
  60. S. M. Barnett and P. M. Radmore, Methods in Theoretical Quantum Optics (Oxford University Press, 1997).
  61. R. Loudon, The Quantum Theory of Light, 3rd Ed. (Oxford University Press, 2000).
  62. C. J. McKinstrie, M. Yu, M. G. Raymer and S. Radic, "Quantum noise properties of parametric processes in fibers," Opt. Express 13, 4986-5012 (2005).
  63. S. J. van Enk, "Entanglement of electromagnetic fields," Phys. Rev. A 67, 022303 (2003). [CrossRef] [PubMed]
  64. K. N. Cassemiro, A. S. Villar, P. Valente, M. Martinelli and P. Nussenzveig, "Experimental observation of threecolor optical quantum correlations," Opt. Lett. 32, 695-697 (2007). [CrossRef]
  65. P. van Loock and A. Furusawa, "Detecting genuine multipartite continuous-variable entanglement," Phys. Rev. A 67, 052315 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited