OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 4 — Feb. 18, 2008
  • pp: 2778–2783

Broadband group delay dispersion compensation for a microscope objective lens with a speciallydesigned mechanical deformable mirror

Yasuyuki Ozeki, Gen Omura, and Kazuyoshi Itoh  »View Author Affiliations

Optics Express, Vol. 16, Issue 4, pp. 2778-2783 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (122 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose that the bending profile of a mechanical deformable mirror can be designed by shaping its form, realizing a simple, compact, and broadband group delay dispersion compensator in a 4-f pulse shaper arrangement. By using the proposed compensator, spectral phase distortion of a microscope objective lens is successfully pre-compensated for to generate a sub-8 fs pulse at the focus of the lens.

© 2008 Optical Society of America

OCIS Codes
(320.5540) Ultrafast optics : Pulse shaping
(230.2035) Optical devices : Dispersion compensation devices

ToC Category:
Ultrafast Optics

Original Manuscript: January 4, 2008
Revised Manuscript: February 12, 2008
Manuscript Accepted: February 12, 2008
Published: February 13, 2008

Virtual Issues
Vol. 3, Iss. 3 Virtual Journal for Biomedical Optics

Yasuyuki Ozeki, Gen Omura, and Kazuyoshi Itoh, "Broadband group delay dispersion compensation for a microscope objective lens with a specially-designed mechanical deformable mirror," Opt. Express 16, 2778-2783 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Schibli, T.R. , Kuzucu, O. , Kim, J.-W. , Ippen, E.P. , Fujimoto, J.G. , Kaertner, F.X. , Scheuer, V. , and Angelow, G.  (2003). Toward single-cycle laser systems. IEEE J. Sel. Top. Quantum Electron. 9, 990-1001. [CrossRef]
  2. Dudovich, N. , Oron, D. , and Silberberg, Y.  (2002). Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy. Nature 418, 512. [CrossRef] [PubMed]
  3. Ogilvie, J.P. , Kubarych, K. , Alexandrou, A. , and Joffre, M.  (2005). Fourier transform measurement of two-photon excitation spectra: applications to microscopy and optimal control. Opt. Lett. 30, 911. [CrossRef] [PubMed]
  4. Ogilvie, J.P. , Beaurepaire, E. , Alexandrou, A. , and Joffre, M.  (2006). Fourier-transform coherent anti-Stokes Raman scattering microscopy. Opt. Lett. 31, 480. [CrossRef] [PubMed]
  5. Isobe, K. , Ozeki, Y. , Kawasumi, T. , and Kataoka, S.  (2006). S. 'i. Kajiyama, K. Fukui, and K. Itoh, "Highly sensitive spectral interferometric four-wave mixing microscopy near the shot noise limit and its combination with two-photon excited fluorescence microscopy. Opt. Express 14, 11204-11214http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-23-11204. [CrossRef] [PubMed]
  6. Treacy, E.B.  (1969). Optical pulse compression with diffraction gratings. IEEE J. Quantum Electron. QE-5, 454. [CrossRef]
  7. Fork, R.L. , Martinez, O.E. , and Gordon, J.P.  (1984). Negative dispersion using pairs of prisms. Opt. Lett. 9, 150. [CrossRef] [PubMed]
  8. Szipöcs, R. , Ferencz, K. , Spielmann, C. , and Krausz, F.  (1994). Chirped multilayer coatings for broadband dispersion control in femtosecond lasers. Opt. Lett. 19, 201. [CrossRef] [PubMed]
  9. Tournois, P.  (1997). Acousto-optic programmable dispersive filter for adaptive compensation of group delay time dispersion in laser systems. Opt. Commun. 140, 245. [CrossRef]
  10. Weiner, A.M. , Leaird, D.E. , Patel, J.S. , and Wullert, J.R.  (1990). Programmable femtosecond pulse shaping by use of a multielement liquid-crystal phase modulator. Opt. Lett. 15, 326. [CrossRef] [PubMed]
  11. Zeek, E. , Maginnis, K. , Backus, S. , Russek, U. , Murnane, M. , Mourou, G. , Kapteyn, H. , and Vdovin, G.  (1999). Pulse compression by use of deformable mirrors. Opt. Lett. 24, 493-495. [CrossRef]
  12. Radzewicz, C. , Wasylczyk, P. , Wasilewski, W. , and Krasi?ski, J.S.  (2004). Piezo-driven deformable mirror for femtosecond pulse shaping. Opt. Lett. 29, 177. [CrossRef] [PubMed]
  13. J. P. Heritage, E. W. Chase, R. N. Thurston, and M. Stern, "A simple femtosecond optical third-order disperser," CLEO’91, CTuB3 (1991).
  14. Jasapara, J. , and Rudolph, W.  (1999). Characterization of sub-10-fs pulse focusing with high-numerical-aperture microscope objectives. Opt. Lett. 24, 777. [CrossRef]
  15. Chen, J. , Kawano, H. , Nabekawa, Y. , Mizuno, H. , Miyawaki, A. , Tanabe, T. , Kannari, F. , and Midorikawa, K.  (2004). Selective excitation between two-photon and three-photon fluorescence with engineered cost functions. Opt. Express 12, 3408-3414http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-15-3408. [CrossRef] [PubMed]
  16. Isobe, K. , Suda, A. , Tanaka, M. , Kannari, F. , Kawano, H. , Mizuno, H. , Miyawaki, A. , and Midorikawa, K.  "Multi-nonlinear spectroscopy using fringe resolved autocorrelation technique," presented at the 68th autumn meeting of the Japan Soc. Appl. Phys., Hokkaido, Japan, paper 7p-ZA-3, September 7th, 2007. (in Japanese).
  17. Goh, C.S. , Set, S.Y. , Taira, K. , Khijwania, S.K. , and Kikuchi, K.  (2002). Nonlinearly strain-chirped fiber Bragg grating with an adjustable dispersion slope. IEEE Photon. Technol. Lett. 14, 663. [CrossRef]
  18. Wefers, M.M. , and Nelson, K.A.  (1996). Space-time profiles of shaped ultrafast optical waveforms. IEEE J. Quantum Electron. 32, 161. [CrossRef]
  19. Claig, R.R. , Jr. Mechanics of Materials, 2nd ed., (New York, Wiley, 2000).
  20. Lepetit, L. , Chériaux, G. , and Joffre, M.  (1995). Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy. J. Opt. Soc. Am. B 12, 2467. [CrossRef]
  21. Kim, J. , Birge, J.R. , Sharma, V. , Fujimoto, J.G. , Kärtner, F.X. , Scheuer, V. , and Angelow, G.  (2005). Ultrabroadband beam splitter with matched group-delay dispersion. Opt. Lett. 30, 1569-1571. [CrossRef] [PubMed]
  22. Yamane, K. , Kito, T. , Morita, R. , and Yamashita, M.  (2004). Experimental and theoretical demonstration of validity and limitations in fringe-resolved autocorrelation measurements for pulses of few optical cycles. Opt. Express 12, 2762-2773http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-12-2762. [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited