OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 4 — Feb. 18, 2008
  • pp: 2804–2815

Properties of GexAsySe1-x-y glasses for all-optical signal processing

Amrita Prasad, Cong-Ji Zha, Rong-Ping Wang, Anita Smith, Steve Madden, and Barry Luther-Davies  »View Author Affiliations


Optics Express, Vol. 16, Issue 4, pp. 2804-2815 (2008)
http://dx.doi.org/10.1364/OE.16.002804


View Full Text Article

Enhanced HTML    Acrobat PDF (2464 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a systematic study of GexAsySe1-x-y bulk chalcogenide glasses to determine the best composition for fabricating alloptical devices. The dependence of physical parameters such as the bandgap, glass transition temperature and third order optical nonlinearity (n2 ) on composition has been studied and a relation between the bond-structure and elevated linear loss levels in high Germanium glasses has been identified. It is found that glasses with 11<x<13 % are most suitable for all-optical devices.

© 2008 Optical Society of America

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(160.4760) Materials : Optical properties
(230.1150) Optical devices : All-optical devices

ToC Category:
Materials

History
Original Manuscript: November 14, 2007
Revised Manuscript: January 30, 2008
Manuscript Accepted: February 13, 2008
Published: February 14, 2008

Citation
Amrita Prasad, Cong-Ji Zha, Rong-Ping Wang, Anita Smith, Steve Madden, and Barry Luther-Davies, "Properties of GexAsySe1-x-y glasses for all-optical signal processing," Opt. Express 16, 2804-2815 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-4-2804


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Quemard, F. Smektala, V. Couderc, A. Barthelemy, and J. Lucas, "Chalcogenide glasses with high nonlinear optical properties for telecommunications," J. Phys. Chem. Solids 62, 1435-1440 (2001). [CrossRef]
  2. F. Smektala, C. Quemard, L. Leniendre, J. Lucas, A. Barthelemy, and C. De Angelis, "Chalcogenide glasses with large nonlinear refractive indices," J. Non-Cryst. Solids 239, 139-142 (1998). [CrossRef]
  3. J. T. Gopinath, M. Solajcic, and E. P. Ippen, "Third order nonlinearities in Ge-As-Se based glasses for telecommunications applications," J. Appl. Phys. 96, 6931-6933 (2004). [CrossRef]
  4. J. M. Harbold, F. O. Ilday, F. W. Wise and B. G. Aitken, "Highly nonlinear Ge-As-Se and Ge-As-S-Se Glasses for all-optical switching," IEEE Photon. Technol. Lett. 14, 822-824 (2002). [CrossRef]
  5. J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw and I. D. Aggarwal, "Highly nonlinear As-S-Se glasses for all-optical switching," Opt. Lett. 27, 119-121 (2002). [CrossRef]
  6. O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, "Optical regeneration at 40 Gb/s and beyond," J. Lightwave Technol. 21, 2779-2790 (2003). [CrossRef]
  7. Z. J. Huang, A. Gray, I. Khrushchev, and I. Bennion, "10-Gb/s transmission over 100 mm of standard fiber using 2R regeneration in an optical loop mirror," IEEE Photon. Technol. Lett. 16, 2526-2528 (2004). [CrossRef]
  8. G. Raybon, Y. Su, J. Leuthold, R.-J. Essiambre, T. Her, C. Joergensen, P. Steinvurzel, and K. D. K. Feder, "40 Gbit/s pseudo-linear transmission over one million kilometers," in Proceedings of Optical Fiber Communications Conference, Anaheim, CA, 2002.
  9. T. Cardinal, K. A. Richardson, H. Shim, A. Schulte, R. Beatty, K. Le Foulgoc, C. Meneghini, J. F. Viens, and A. Villeniuve, "Nonlinear optical properties of chalcogenide glasses in the system As-S-Se," J. Non-Cryst. Solids 256-257, 353-360 (1999). [CrossRef]
  10. R. P. Wang, A. V. Rode, C. J. Zha, S. J. Madden, and B. Luther-Davies, "Annealing induced phase transformation in amorphous As2S3 films," J. Appl. Phys. 100, 063524-063524-4 (2006).
  11. S. J. Madden, D-Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta'eed, M. D. Pelusi, and B. J. Eggleton, "Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration," Opt. Express 15, 14414 (2007). [CrossRef]
  12. C. Zha, R. P. Wang, A. Smith, A. Prasad, R. A. Jarvis and B. Luther-Davies, "Optical properties and structural correlations of GeAsSe chalcogenide glasses," J. Mater. Sci.: Mater. Electron. 18, 389-392 (2007). [CrossRef]
  13. G. I. Stegeman and E. W. Wright, "All-Optical Waveguide Switching," Opt. Quantum Electron. 22, 95-122 (1990). [CrossRef]
  14. Z. Borisova, Glassy Semiconductors, (Plenum Press 1981).
  15. T. Qu, D. G. Georgiev, P. Boolchand, and M. Micoulaut, "The Intermediate Phase in Ternary GexAsxSe1-2x Glasses," Mater. Res. Soc. Symp. Proc. 754, CC8.1.1- CC8.1.12 (2003).
  16. R. P. Wang, C. J. Zha, A. V. Rode, S. J. Madden, and B. Luther-Davies, "Thermal characterization of Ge-As-Se glasses by differential scanning calorimetry," J. Mater. Sci.: Maters. Electron. 18, 419-422 (2007). [CrossRef]
  17. K. Tanaka, "Structural phase transitions in chalcogenide glass," Phys. Rev. B 39, 1270-1279 (1989). [CrossRef]
  18. P. Boolchand, D. Georgiev, T. Qu, F. Wang, L. Cai, and S. Chakravarty, "Nanoscale phase separation effects near r=2.4 and 2.67 and rigidity transitions in chalcogenide glasses," C. R. Chim. 11, 713-724 (2003).
  19. W. B. Jackson, N. M. Amer, A. C. Boccara, and D. Fournier, "Photothermal Deflection Spectroscopy and Detection," Appl. Opt. 20, 1333-1344 (1981). [CrossRef] [PubMed]
  20. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum. Electron. 26, 760-769 (1990). [CrossRef]
  21. T. Kato, Y. Suetsugu, M. Takagi, E. Sasaoka, and M. Nishimura, "Measurement of the nonlinear refractive index in optical fibre by the cross-phase modulation method with depolarized pump light," Opt. Lett. 20, 988-990 (1995). [CrossRef] [PubMed]
  22. Y. Ruan, W. Li, R. Jarvis, N. Madsen, A. Rode, and B. Luther-Davies, "Fabrication and characterization of low loss rib chalcogenide waveguides made by dry etching," Opt. Express 12, 5140-5145 (2004). [CrossRef]
  23. J. Troles, F. Smektala, G. Boudebs, A. Monteil, B. Bureau, and J. Lucas, "Chalcogenide glasses as solid state optical limiters at 1.064 µm," Opt. Mater. 25, 231-237 (2004). [CrossRef]
  24. M. Popescu, Non-crystalline Chalcogenides, (Kluwer Academic Publishers, 2000).
  25. N. Kumagai, J. Shirafuji, and Y. Inuishi, "Raman and Infrared studies on vibrational properties of Ge-Se glasses," J. Phys. Soc. Jpn. 42, 1262-1268 (1977). [CrossRef]
  26. P. N?mec, B. Frumarová, and M. Frumar, "Structure and properties of pure and Pr3+ doped Ge25Ga5Se70 and Ge30Ga5Se65 glasses," J. Non-Cryst. Solids 270, 137 (2000). [CrossRef]
  27. E. M. Vogel, M. J. Weber and D. M. Krol, "Nonlinear optical phenomena in glass," Phys. Chem. Glasses 32, 231-254 (1991).
  28. M. Asobe, K. Suzuki, T. Kanamori, and K. Kubodera, "Nonlinear Refractive Index measurement in Chalcogenide Glass Fibres by self phase modulation," Appl. Phys. Lett. 60, 1153-1154 (1992). [CrossRef]
  29. H. C. Nguyen, K. Finsterbusch, D. J. Moss, and B. J. Eggleton, "Dispersion in nonlinear figure of merit of As2Se3 chalcogenide fibre," Electron. Lett. 42, 571-572 (2006). [CrossRef]
  30. M. Shiek-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, "Dispersion of Bound Electronic Nonlinear Refraction in Solids," IEEE J. Quantum. Electron. 27, 1296-1309 (1991). [CrossRef]
  31. K. Tanaka, "Nonlinear optics in glasses: How can we analyse?," J. Phys. Chem. Solids 68, 896-900 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited