OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 4 — Feb. 18, 2008
  • pp: 2816–2828

Highly efficient generation of broadband cascaded four-wave mixing products

Arismar Cerqueira S. Jr, J. M. Chavez Boggio, A. A. Rieznik, H. E. Hernandez-Figueroa, H. L. Fragnito, and J. C. Knight  »View Author Affiliations

Optics Express, Vol. 16, Issue 4, pp. 2816-2828 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (476 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report and investigate on a highly efficient technique to generate broadband cascaded four-wave mixing (FWM) products. It consists of launching two strong pump waves near the zero-dispersion wavelength of very short (of order of few meters) optical fibers. Simulations based on split step fourier method (SSFM) and experimental data demonstrate the efficiency of this approach. Multiple FWM products have been investigated by using conventional fibers and ultra-flattened dispersion photonic crystal fibers. Measured results present bandwidths of 300 nm with up to 118 FWM products. We have also demonstrated a flat bandwidth of 110 nm covering the C and L bands, with a small variation of only 1.2 dB between the powers of FWM products, achieved by using highly nonlinear fibers (HNLFs). The use of dispersion tailored photonic crystal fibers has been shown interesting for improving the multiple FWM efficiency and reducing the separation between the pump wavelengths.

© 2008 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(190.0190) Nonlinear optics : Nonlinear optics
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: November 5, 2007
Revised Manuscript: January 25, 2008
Manuscript Accepted: January 30, 2008
Published: February 14, 2008

Arismar Cerqueira Sodre, J. M. Chavez Boggio, A. A. Rieznik, H. E. Hernandez-Figueroa, H. L. Fragnito, and J. C. Knight, "Highly efficient generation of broadband cascaded four-wave mixing products," Opt. Express 16, 2816-2828 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Inoue, "Four-wave mixing in an optical fiber in the zero-dispersion wavelength region," J. Lightwave Technol. 10, 1553-1561 (1992). [CrossRef]
  2. G. P. Agrawal, Nonlinear Fiber Optics, Second Edition (Academic Press, NY, 1995).
  3. C. J. McKinstrie and M. G. Raymer, "Four-wave-mixing cascades near the zero-dispersion frequency," Opt. Express 14, 9600-9610 (2006). [CrossRef] [PubMed]
  4. C. J. McKinstrie, S. Radic, M. G. Raymer, and L. Schenato, "Unimpaired phase-sensitive amplification by vector four-wave mixing near the zero-dispersion frequency," Opt. Express 15, 2178-2189 (2007). [CrossRef] [PubMed]
  5. E. M. Dianov, P. V. Mamyshev, A. M. Prokhorov, and S. V. Chernikov, "Generation of a train of fundamental solitons at a high repetition rate in optical fibers," Opt. Lett. 14, 1008 (1989). [CrossRef] [PubMed]
  6. J. Fatome, S. Pitois, and G. Millot, "20-GHz-to-1-THz repetition rate pulse sources based on multiple four-wave mixing in optical fibers," IEEE J. Quantum Electron. 42, 1038-1046 (2006). [CrossRef]
  7. S. Pitois, C. Finot, J. Fatome, B. Sinardet, and G. Millot, "Generation of 20-GHz picosecond pulse train in the normal and anomalous dispersion regimes of optical fibers," Opt. Commun. 260, 301-306 (2006). [CrossRef]
  8. A. Zhang, H. Liu, M.S. Demokan, and H. Y. Tam, "Width and wavelength-tunable optical pulse train generation based on four-wave mixing in highly nonlinear photonic crystal fiber," IEEE Photon. Technol. Lett. 17, 2664-2666 (2005). [CrossRef]
  9. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000). [CrossRef] [PubMed]
  10. S. Arismar Cerqueira Jr, J. M. Chavez Boggio, H. E. Hernandez-Figueroa, H. L. Fragnito, and J. C. Knight, "Highly efficient generation of cascaded four-wave mixing products in a Hybrid Photonic Crystal Fiber," in Proc. of European Conference on Optical Communication (ECOC 2007).
  11. S. Arismar Cerqueira Jr., F. Luan, C. M. B. Cordeiro, A. K. George, and J. C. Knight, "Hybrid photonic crystal fiber," Opt. Express 14, 926-931(2006). [CrossRef]
  12. M. E. Marhic, A. A. Rieznik, H. L. Fragnito, and L. G. Kazovsky, "Accurate modelling of fiber OPAs with nonlinear ellipse rotation terms in the Split-Step Fourier Method," Proceedings of OSA OAA (2006).
  13. O. Aso, S. Arai, T. Yagi, M. Tadakuma, Y. Suzuki, and S. Namiki, "Broadband four-wave mixing generation in short optical fibers," Electron. Lett. 36, 709-711 (2000). [CrossRef]
  14. J. M. Chavez Boggio and H. L. Fragnito, "Simple four-wave-mixing-based method for measuring the ratio between the third- and fourth-order dispersion in optical fibers," J. Opt. Soc. Am. B 24, 2046-2054 (2007). [CrossRef]
  15. A. Ferrando, E. Silvestre, J. J. Miret, and P. Andres, "Nearly zero ultraflattened dispersion in photonic crystal fibers," Opt. Lett. 25, 790-792 (2000). [CrossRef]
  16. W. H. Reeves, J. C. Knight, P. St. J. Russell, and P. J. Roberts, "Demonstration of ultra-flattened dispersion in photonic crystal fibers," Opt. Express 10, 609-613 (2002). [PubMed]
  17. K. Inoue, "Arrangement of fiber pieces for a wide wavelength conversion range by fiber four-wave mixing," Opt. Lett. 19, 1189-1191 (1994). [CrossRef] [PubMed]
  18. M. E. Marhic, F. S. Yang, H. Min-Chen, and L. G. Kazovsky, "High-nonlinearity fiber optical parametric amplifier with periodic dispersion compensation," J. Lightwave Technol. 17, 210-215 (1999). [CrossRef]
  19. L. Provino, A. Mussot, E. Lantz, T. Sylvestre, and H. Maillotte, "Broadband and flat parametric amplifiers using a multi-section dispersion-tailored nonlinear fiber arrangement," J. Opt. Soc. Am. B 20, 1532-1537 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited