OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 5 — Mar. 3, 2008
  • pp: 2845–2858

Evanescent field of vectorial highly non-paraxial beams

R. Martínez-Herrero, P. M. Mejías, and A. Carnicer  »View Author Affiliations

Optics Express, Vol. 16, Issue 5, pp. 2845-2858 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (344 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In terms of the Fourier spectrum, a simple but general analytical expression is given for the evanescent field associated to a certain kind of non-paraxial exact solutions of the Maxwell equations. This expression enables one to compare the relative weight of the evanescent wave with regard to the propagating field. In addition, in those cases in which the evanescent term is significant, the magnitude of the field components across the transverse profile (including the evanescent features) can be determined. These results are applied to some illustrative examples.

© 2008 Optical Society of America

OCIS Codes
(260.0260) Physical optics : Physical optics
(260.2110) Physical optics : Electromagnetic optics
(260.5430) Physical optics : Polarization

ToC Category:
Physical Optics

Original Manuscript: November 29, 2007
Revised Manuscript: January 10, 2008
Manuscript Accepted: January 24, 2008
Published: February 15, 2008

R. Martínez-Herrero, P. M. Mejías, and A. Carnicer, "Evanescent field of vectorial highly non-paraxial beams," Opt. Express 16, 2845-2858 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. P. Agrawal and M. Lax, "Free-space wave propagation beyond the paraxial approximation," Phys. Rev. A 27, 1693-1695 (1983). [CrossRef]
  2. D. G. Hall, "Vector-beam solutions of Maxwell’s wave equations," Opt. Lett. 21, 9-11 (1996). [CrossRef] [PubMed]
  3. P. Varga and P. Török, "Exact and approximate solutions of Maxwell’s equations for a confocal cavity," Opt. Lett. 21, 1523-1525 (1996). [CrossRef] [PubMed]
  4. A. Doicu and T. Wriedt, "Plane wave spectrum of electromagnetic beams," Opt. Commun. 136, 114-124 (1997) [CrossRef]
  5. S. R. Seshadri, "Electromagnetic Gaussian beam," J. Opt. Soc. Am. A 15, 2712-2719 (1998). [CrossRef]
  6. P. Varga and P. Török, "The Gaussian wave solution of Maxvell’s equations and the validity of the scalar wave approximation," Opt. Commun. 152, 108-118 (1998). [CrossRef]
  7. S. R. Seshadri, "Partially coherent Gaussian Schell-model electromagnetic beam," J. Opt. Soc. Am. A 16, 1373-1380 (1999). [CrossRef]
  8. T. Setala, A. T. Friberg, and M. Kaivola, "Decomposition of the point-dipole field into homogeneous and evanescent parts," Phys. Rev. E 59, 1200-1206 (1999). [CrossRef]
  9. A. V. Shchegrov and P. S. Carney, "Far-field contribution to the electromagnetic Green’s tensor from evanescent modes," J. Opt. Soc. Am. A,  16, 2583-2584 (1999). [CrossRef]
  10. C. J. R. Sheppard and S. Saghafi, "Electromagnetic Gaussian beams beyond the paraxial approximation," J. Opt. Soc. Am. A 16, 1381-1386 (1999). [CrossRef]
  11. S. R. Seshadri, "Average characteristics of partially coherent electromagnetic beams," J. Opt. Soc. Am. A 17, 780-789 (2000). [CrossRef]
  12. C. J. R. Sheppard, "Polarization of almost-planes waves," J. Opt. Soc. Am. A 17, 335-341 (2000). [CrossRef]
  13. R. Martínez-Herrero, P. M. Mejías, S. Bosch, and A. Carnicer, "Vectorial structure of nonparaxial electromagnetic beams," J. Opt. Soc. Am. A 18, 1678-1680 (2001). [CrossRef]
  14. J. Tervo and J. Turunen, "Self-imaging of electromagnetic fields," Opt. Express 9, 622-630 (2001). [CrossRef] [PubMed]
  15. P. Pääkkönen, J. Tervo, P. Vahimaa, J. Turunen and F. Gori, General vectorial decomposition of electromagnetic fields with application to propagation-invariant and rotating fields," Opt. Express 10, 949-959 (2002). [PubMed]
  16. C. G. Chen, P. T. Konkola, J. Ferrera, R. K. Heilman and M. L. Schattenburg, "Analyses of vector Gaussian beam propagation and the validity of paraxial and spherical approximation," J. Opt. Soc. Am. A 19, 404-412 (2002). [CrossRef]
  17. R. Borghi, A. Ciattoni and M. Santarsiero, "Exact axial electromagnetic field for vectorial Gaussian and flattened Gaussian boundary distributions," J. Opt. Soc. Am. A 19, 1207-1211 (2002). [CrossRef]
  18. A Ciattoni, B. Crosignani and P. Di Porto, "Vectorial analytical description of propagation of a highly nonparaxial beam," Opt. Commun. 202, 17-20 (2002). [CrossRef]
  19. P. M. Mejías, R. Martínez-Herrero, G. Piquero and J. Movilla, "Parametric characterization of the spatial structure of non-uniformly polarized laser beams," Prog. Quantum Electron. 26, 65-130 (2002). [CrossRef]
  20. H. F. Arnoldus and J. T. Foley, "Traveling and evanescent fields of an electric point dipole," J. Opt. Soc. Am. A 19, 1701-1711 (2002). [CrossRef]
  21. N. I. Petrov, "Evanescent and propagating fields of a strongly focused beam, " J. Opt. Soc. Am. A 20, 2385-2389 (2003). [CrossRef]
  22. K. Duan and B. Lü, "Polarization properties of vectorial nonparaxial Gaussian beam in the far field," Opt. Lett. 30, 308-310 (2005). [CrossRef] [PubMed]
  23. G. Zhou, X. Chu and L. Zhao, "Propagation characteristics of TM Gaussian beam," Opt. Laser Technol. 37, 470-474 (2005). [CrossRef]
  24. K. Belkebir, P. C. Chaumet and A. Sentetac, "Influence of multiple scatering on three-dimensional imaging with optical diffraction tomography," J. Opt. Soc. Am. A 23, 586-595 (2006). [CrossRef]
  25. R. Martínez-Herrero, P. M. Mejías, S. Bosch and A. Carnicer, "Structure of the transverse profile of Gaussian-model non-paraxial electromagnetic beams," J. Opt. A: Pure Appl. Opt. 8, 524-530 (2006). [CrossRef]
  26. P. C. Chaumet, "Fully vectorial highly nonparaxial beam close to the waist," J. Opt. Soc. Am. A 23, 3197-3202 (2006). [CrossRef]
  27. H. Guo, J. Chen and S. Zhuang, "Vector plane spectrum of an arbitrary polarized electromagnetic wave," Opt. Express 14, 2095-2100 (2006). [CrossRef] [PubMed]
  28. G. C. Sherman, J. J. Stamnes and E. Lalor, "Asymptotic approximations to angular-spectrum representations," J. Math. Phys. 17, 760-776 (1976). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited