OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 5 — Mar. 3, 2008
  • pp: 2933–2941

Silicon nanoporous pillar array: a silicon hierarchical structure with high light absorption and triple-band photoluminescence

Hai Jun Xu and Xin Jian Li  »View Author Affiliations

Optics Express, Vol. 16, Issue 5, pp. 2933-2941 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (3264 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A silicon hierarchical structure, silicon nanoporous pillar array (Si-NPA), was prepared by a hydrothermal etching method. The architecture of Si-NPA was characterized to be a regular array of micron-sized, quasi-identical and nanoporous silicon pillars with an additional porous layer beneath the array. The pore walls were proved to be consisted of a SiOx matrix and dispersive silicon nanocrystallites. An integral reflectivity below 4% was achieved in the wavelength range of 240–2400 nm. Three photoluminescence bands, one blue and two red, were observed at room temperature and attributed to the recombination processes through band-to-band transition and luminescent centers, respectively. The structural and physical properties indicate that Si-NPA might be as both a functional silicon nanostructure and a template for assembling silicon-based nanocomposites in fabricating optoelectronic nanodevices.

© 2008 Optical Society of America

OCIS Codes
(160.6000) Materials : Semiconductor materials
(250.5230) Optoelectronics : Photoluminescence
(300.1030) Spectroscopy : Absorption
(310.6860) Thin films : Thin films, optical properties
(160.4236) Materials : Nanomaterials

ToC Category:

Original Manuscript: November 20, 2007
Revised Manuscript: January 26, 2008
Manuscript Accepted: January 27, 2008
Published: February 19, 2008

Hai Jun Xu and Xin Jian Li, "Silicon nanoporous pillar array: a silicon hierarchical structure with high light absorption and triple-band photoluminescence," Opt. Express 16, 2933-2941 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. T. Canham, "Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers," Appl. Phys. Lett. 57, 1046-1048 (1990). [CrossRef]
  2. M. W. Shao, Y. Y. Shan, N. B. Wong, and S. T. Lee, "Silicon nanowire sensors for bioanalystical applications: glucose and hydrogen peroxide detection," Adv. Funct. Mater. 15, 1478-1482 (2005). [CrossRef]
  3. J. Heitmann, F. Muller, M. Zacharias, and U. Gosele, "Silicon nanocrystals: Size matters," Adv. Mater. 17, 795-803 (2005). [CrossRef]
  4. J. M. Garguilo, F. A. M. Koeck, R. J. Nemanich, X. C. Xiao, J. A. Carlisle, and O. Auciello, "Thermionic field emission from nanocrystalline diamond-coated silicon tip arrays," Phys. Rev. B 72, 165404 (2005). [CrossRef]
  5. S. Fujita, K. Uchida, S. Yasuda, R. Ohba, and T. Tanamoto, "Novel random number generators based on Si nanodevices for mobile communication security systems," Nanotechnology 3, 309-312 (2003).
  6. M. Kanechika, N. Sugimoto, and Y. Mitsushima, "Field-emission characteristics of a silicon tip defined by oxygen precipitate," J. Appl. Phys. 98, 054907 (2005). [CrossRef]
  7. G. Zheng, W. Lu, S. Jin, and C. M. Lieber, "Synthesis and fabrication of high-performance n-type silicon nanowire transistors," Adv. Mater. 16, 1890-1893 (2004). [CrossRef]
  8. W. Sun, J. E. Puzas, T. J. Sheu, X. Liu, and P. M. Fauchet, "Nano- and microscale porous silicon as a cell interface for bone-tissue engineering," Adv. Mater. 19, 921-924 (2007). [CrossRef]
  9. N. G. Shang, F. Y. Meng, F. C. K. Au, Q. Li, C. S. Lee, I. Bello, and S. T. Lee, "Fabrication and field emission of high-density silicon cone arrays," Adv. Mater. 14, 1308-1311 (2002). [CrossRef]
  10. D. V. Scheible and R. H. Blick, "Silicon nanopillars for mechanical single-electron transport," Appl. Phys. Lett. 84, 4632-4634 (2004). [CrossRef]
  11. B. Cluzel, N. Pauc, V. Calvo, T. Charvolin, and E. Hadji, "Nanobox array for silicon-on-insulator luminescence enhancement at room temperature," Appl. Phys. Lett. 88,133120 (2006). [CrossRef]
  12. K. Peng, Y. Xu, Y. Wu, Y. Yan, S. -T. Lee, and J. Zhu, "Aligned single-crystalline Si nanowire arrays for photovoltaic applications," Small 1, 1062-1067 (2005). [CrossRef]
  13. X. Y. Chen, Y. F. Lu, L. J. Tang, Y. H. Wu, B. J. Cho, X. J. Xu, J. R. Dong, and W. D. Song, "Annealing and oxidation of silicon oxide films prepared by plasma-enhanced chemical vapor deposition," J. Appl. Lett. 97, 014913 (2005).
  14. X. Cheng, Z.-D. Feng, and G.-F. Luo, "Effect of potential steps on porous silicon formation," Electrochimica Acta. 48, 497-501 (2003). [CrossRef]
  15. K. Hadobas, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, "Reflection properties of nanostructure-arrayed silicon surfaces," Nanotechnology 11, 161-164 (2000). [CrossRef]
  16. S. Strehlke, S. Bastide, and C. Levy-Clement, "Optimization of porous silicon reflectance for silicon photovoltaic cells," Sol. Energy Mater. Sol. Cells 58, 399-409 (1999). [CrossRef]
  17. M. Lipinski, S. Bastide, P. Panek, and C. Levy-Clement, "Porous silicon antireflection coating by electrochemical and chemical methods for silicon solar cells manufacturing," Phys. Stat. Sol. A 197, 512-517 (2003). [CrossRef]
  18. M. V. Wolkin, J. Jorne, P. M. Faucher, G. Allan, and C. Delerue, "Electronic States and Luminescence in Porous Silicon Quantum Dots: The Role of Oxygen," Phys. Rev. Lett. 82, 197-200 (1999). [CrossRef]
  19. G. G. Qin and Y. J. Li, "Photoluminescence mechanism model for oxidized porous silicon and nanoscale-silicon-particle-embedded silicon oxide," Phys. Rev. B 68, 085309 (2003). [CrossRef]
  20. J. Q. Duan, H. Z. Song, G. Q. Yao, L. Z. Zhang, B. R. Zhang, and G. G. Qin, "Variation of double-peak structure in photoluminescence spectra from porous silicon with excitation wavelength," Superlattices Microstruct. 16, 55-58 (1994). [CrossRef]
  21. P. Li, G. Z. Wang, Y. R. Ma, and R. C. Fang, "Origin of the blue and red photoluminescence from aged porous silicon," Phys. Rev. B 58, 4057-4065 (1998-I). [CrossRef]
  22. X. L. Wu, J. Y. Fan, T. Qiu, X. Yang, G. G. Siu, and P. K. Chu, "Experimental evidence for the quantum confinement effect in 3c-SiC nanocrystallines," Phys. Rev. Lett. 94, 026102 (2005). [CrossRef] [PubMed]
  23. Md. N. Islam and S. Kumar, "Influence of surface states on the photoluminescence from silicon nanostructures," J. Appl. Phys. 93, 1753-1759 (2003). [CrossRef]
  24. M. Bruno, M. Palummo, A. Marini, R. D. Sole, and S. Ossicini, "From Si nanowires to porous silicon: The role of excitonic effects," Phys. Rev. Lett. 98, 036807 (2007). [CrossRef] [PubMed]
  25. Y. Kanemitsu, H. Uto, Y. Masumoto, T. Matsumoto, T. Futagi, and H. Mimura, "Microstructure and optical properties of free-standing porous silicon films: Size dependence of absorption spectra in Si nanometer-sized crystallites," Phys. Rev. B 48, 2827-2830(1993-II)). [CrossRef]
  26. D. W. Cooke, B. L. Bennett, E. H. Famum, W. L. Hults, K. E. Sickafus, J. F. Smith, and J. L. Smith, T. N. Taylor, P. Tiwari, and A. M. Porits, "SiOx luminescence from light-emitting porous silicon: Support for the quantum confinement/luminescence center model," Appl. Phys. Lett. 68, 1663-1665 (1996). [CrossRef]
  27. R. Carius, R. Fischer, E. Holzenkampfer, and J. Stuke, "Photoluminescence in the amorphous system SiOx," J. Appl. Phys. 52, 4241-4243 (1981). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited