OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 5 — Mar. 3, 2008
  • pp: 2971–2988

Perturbative and non-perturbative aspects of optical filamentation in bulk dielectric media

M. Kolesik and J. V. Moloney  »View Author Affiliations


Optics Express, Vol. 16, Issue 5, pp. 2971-2988 (2008)
http://dx.doi.org/10.1364/OE.16.002971


View Full Text Article

Enhanced HTML    Acrobat PDF (815 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The field of optical filament formation from initial ultrashort laser pulses in bulk dielectric media has now reached a high state of maturity, and has been studied in all three phases of matter, including long distance propagation in air, also termed light string propagation, water, and glass. From the earliest studies of light string propagation in air it was observed that conical emission, namely colored light emission off-axis from the filament, was a byproduct that accompanied the filamentation process.Since then several other byproducts accompanying optical filamentation have been studied, namely, white light or supercontinuum (SC) generation, third-harmonic (TH) generation, and X- and O-waves. Our goal in this paper is to review the theory and simulation of the byproducts accompanying optical filamentation, and to show that a unified approach is possible. Employing the angularly resolved spectrum, or K - Ω spectrum, a notion that has been used to great effect in the area of nonlinear conical waves, we demonstrate that a unified approach to the byproducts accompanying optical filamentation can be achieved using the twin notions of the Effective Three-Wave-Mixing (ETWM) picture of wave-mixing in the presence of filaments, which determines the locus of phase-matched wave generation in the angularly resolved spectrum, and the first-Born approximation to determine the profile of the angularly resolved spectrum. We summarize results of previous works and show that unlike the essentially non-perturbative core of the filament, several byproducts of filamentation can be treated as perturbative effects that have negligible feed-back effects on the filament itself. This should be of great utility for future studies of optimization of the yield of a given byproduct.

© 2008 Optical Society of America

OCIS Codes
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(320.2250) Ultrafast optics : Femtosecond phenomena

ToC Category:
Nonlinear Localization and Filamentation Effects

History
Original Manuscript: January 11, 2008
Revised Manuscript: February 12, 2008
Manuscript Accepted: February 12, 2008
Published: February 19, 2008

Virtual Issues
Focus Serial: Frontiers of Nonlinear Optics (2007) Optics Express

Citation
M. Kolesik and J. V. Moloney, "Perturbative and non-perturbative aspects of optical filamentation in bulk dielectric media," Opt. Express 16, 2971-2988 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-5-2971


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Y. Chiao, E. Garmire, and C. H. Townes, "Self-trapping of optical beams," Phys. Rev. Lett. 13, 479-482 (1964). [CrossRef]
  2. E. Garmire, R. Y. Chiao, and C. H. Townes, "Dynamics and characteristics of the self-trapping of intense light beams," Phys. Rev. Lett. 16, 347-349 (1966). [CrossRef]
  3. P. L. Kelley, "Self-focusing of optical beams," Phys. Rev. Lett. 15, 1005-1008 (1965). [CrossRef]
  4. P. Lallemand and N. Bloembergen, "Self-focusing of laser beams and stimulated Raman gain in liquids," Phys. Rev. Lett. 15, 1010-1012 (1965). [CrossRef]
  5. Y. R. Shen and Y. J. Shaham, "Beam deterioration and stimulated Raman effect," Phys. Rev. Lett. 15, 1008-1010 (1965). [CrossRef]
  6. A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, "Self-channeling of high-peak-power femtosecond laser pulses in air," Opt. Lett. 20, 73-75 (1995). [CrossRef] [PubMed]
  7. L. Woste, C. Wedekind, H. Wille, P. Rairoux, B. Stein, S. Nikolov, C. Werner, S. Niedermeier, F. Ronneberger, H. Schillinger, and R. Sauerbrey, "Femtosecond atmospheric lamp." AT-Fachverlag, Stuttgart, Laser und Optoelectronik 29, 51-53 (1997).
  8. M. Mlejnek, E. M. Wright, and J. V. Moloney, "Dynamic spatial replenishment of femtosecond pulses propagating in air," Opt. Lett. 23, 382-384 (1998). [CrossRef]
  9. E. T. J. Nibbering, P. F. Curley, G. Grillon, B. S. Prade, M. A. Franco, F. Salin, and A. Mysyrowicz, "Conical emission from self-guided femtosecond pulses in air," Opt. Lett. 21, 62-64 (1996). [CrossRef] [PubMed]
  10. J. Kasparian, R. Sauerbrey, D. Mondelain, S. Niedermeier, J. Yu, J. P. Wolf, Y. B. Andre, M. A. Franco, B. S. Prade, S. Tzortzakis, A. Mysyrowicz, M. Rodriguez, H. Wille, and L. Woste, "Infrared extension of the supercontinuum generated by femtosecond terrawatt laser pulses propagating in the atmosphere," Opt. Lett. 25, 1397-99 (2000). [CrossRef]
  11. A. L. Gaeta, "Catastrophic collapse of ultrashort pulses," Phys. Rev. Lett. 84, 3582-3585 (2000). [CrossRef] [PubMed]
  12. N. Akozbek, A. Iwasaki, A. Becker, M. Scalora, S. L. Chin, and C. M. Bowden, "Third-harmonic generation and self-channeling in air using high-power femtosecond laser pulses," Phys. Rev. Lett. 89, 143901-4 (2002). [CrossRef] [PubMed]
  13. S. Tzortzakis, G. Mechain, G. Patalano, Y. B. Andre, B. Prade, M. Franco, A. Mysyrowicz, J. M. Munier, M. Gheudin, G. Beaudin, and P. Encrenaz, "Coherent subterahertz radiation from femtosecond infrared filaments in air," Opt. Lett. 27, 1944-1946 (2002). [CrossRef]
  14. C. D’Amico, A. Houard, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon. and V. T. Tikhonchuk, " Conical forward THz emission from femtosecond-laser-beam filamentation in air, " Phys. Rev. Lett. 98, 235002-4 (2007). [CrossRef] [PubMed]
  15. P. DiTrapani, G. Valiulis, A. Piskarskas, O. Jedrkiewicz, J. Trull, C. Conti, and S. Trillo, "Spontaneously generated X-shaped light bullets," Phys. Rev. Lett. 91, 093904-7 (2003). [CrossRef]
  16. M. Kolesik, E. M. Wright, and J. V. Moloney, "Dynamic nonlinear X-Waves for femtosecond pulse propagation in water," Phys. Rev. Lett. 92, 253901-4 (2004). [CrossRef] [PubMed]
  17. D. Faccio, M. A. Porras, A. Dubietis, F. Bragheri, A. Couairon, and P. DiTrapani, "Conical emission, pulse splitting, and X-Wave parametric amplification in nonlinear dynamics of ultrashort light pulses," Phys. Rev. Lett. 96, 193901-4 (2006). [CrossRef] [PubMed]
  18. M. A. Porras, A. Parola, and P. DiTrapani, "Nonlinear unbalanced O-waves: nonsolitary, conical light bullets in nonlinear dissipative media," J. Opt. Soc. Am. B 22, 1406-1413 (2005). [CrossRef]
  19. M. A. Porras, A. Dubietis, E. Kucinskas, F. Bragheri, V. Degiorgio, A. Couairon, D. Faccio, and P. DiTrapani, "From X- to O-shaped spatiotemporal spectra of light filaments in water," Opt. Lett. 30, 3398-3400 (2005). [CrossRef]
  20. A. Couairon and A. Mysyrowicz, "Femtosecond filamentation in transparent media," Physics Reports 441, 47-189 (2007). [CrossRef]
  21. J. Kasparian, and J.-P. Wolf, "Physics and applications of atmospheric nonlinear optics and filamentation," Opt. Express 16, 466-493 (2008). [CrossRef] [PubMed]
  22. V. E. Zakharov and A. B. Shabat, "Exact theory of 2-dimensional self-focusing and one-dimensional selfmodulation of waves in nonlinear media," Sov. Phys. JETP 34, 62-69 (1972).
  23. S. N. Vlasov, V. A. Petrishschev, and V. I. Talanov, "Averaged description of wave beams in linear and nonlinear media (the method of moments)," Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofyzika 14, 1353-1363 (1971) (in Russian).
  24. C. Sulem and P.-L. Sulem, "Focusing nonlinear Schrodinger equation and wave-packet collapse," Nonlinear Anal.-Theory Methods Appl. 30, 833-844 (1997). [CrossRef]
  25. C. Sulem and P.-L. Sulem, The Nonlinear Schr¨odinger Equation: Self-focusing and wave collapse, (Springer Series on Applied Mathematical Sciences, 1999) Vol. 139.
  26. K. D. Moll, A. L. Gaeta, and G. Fibich, "Self-similar optical wave collapse: Observation of the Townes profile," Phys. Rev. Lett. 90, 203902-5 (2003). [CrossRef] [PubMed]
  27. G. G. Luther, A. C. Newell, and J. V. Moloney, "The effects of normal dispersion on collapse events," Physica D 74, 59-74 (1994). [CrossRef]
  28. M. A. Porras, A. Parola, D. Faccio, A. Couairon, and P. Di Trapani, " Light-filament dynamics and the spatiotemporal instability of the Townes profile, " Phys. Rev. A 76, 011803-4 (2007). [CrossRef]
  29. D. Faccio, A. Matijosius, A. Dubietis, R. Piskarskas, A. Varanavicius, E. Gaizauskas, A. Piskarskas, A. Couairon, and P. DiTrapani, "Near- and far-field evolution of laser pulse filaments in Kerr media," Phys. Rev. E 72, 037601-4 (2005). [CrossRef]
  30. M. Kolesik, E. M. Wright, and J. V. Moloney, "Interpretation of the spectrally resolved far field of femtosecond pulses propagating in bulk nonlinear dispersive media," Opt. Express 13, 10729-10741 (2005). [CrossRef] [PubMed]
  31. M. Kolesik, E. M. Wright, and J. V. Moloney, "Supercontinuum and third-harmonic generation accompanying optical filamentation as first-order scattering processes," Opt. Lett. 32, 2816-2818 (2007). [CrossRef] [PubMed]
  32. M. Kolesik, J. V. Moloney, and M. Mlejnek, "Unidirectional optical pulse propagation equation," Phys. Rev. Lett. 89, 28392-5 (2002). [CrossRef]
  33. M. Kolesik and J. V. Moloney, "Nonlinear optical pulse propagation simulation: From Maxwell’s to unidirectional equations," Phys. Rev. E 70, 036604-14 (2004). [CrossRef]
  34. A. Couairon and L. Berge, "Modeling the filamentation of the ultra-short pulses in ionizing media," Phys. Plasmas 7, 193-209 (2000). [CrossRef]
  35. L. Berge and A. Couairon, "Nonlinear propagation of self-guided ultra-short pulses in ionized gases," Phys. Plasmas 7, 210-230 (2000). [CrossRef]
  36. F. Theberge, N. Akozbek, W. Liu, J. F. Gravel, and S. L. Chin, "Third harmonic beam profile generated in atmospheric air using femtosecond laser pulses," Opt. Commun. 245, 399-405 (2005). [CrossRef]
  37. L. Berge, S. Skupin, G. Mejean, J. Kasparian, J. Yu, S. Frey, E. Salmon, and J. P. Wolf, "Supercontinuum emission and enhanced self-guiding of infrared femtosecond filaments sustained by third-harmonic generation in air," Phys. Rev. E 71, 016602-14 (2005). [CrossRef]
  38. M. Kolesik, E. M. Wright, A. Becker, and J. V. Moloney, "Simulation of third-harmonic and supercontinuum generation for femtosecond pulses in air," Appl. Phys. B 85, 531-538 (2006). [CrossRef]
  39. M. Kolesik, G. Katona, J. V. Moloney, and E. M. Wright, "Theory and simulation of supercontinuum generation in transparent bulk media," Appl. Phys. B 77, 185-195 (2003). [CrossRef]
  40. M. Kolesik, G. Katona, J. V. Moloney, and E. M. Wright, "Physical factors limiting the spectral extent and band gap dependence of supercontinuum generation," Phys. Rev. Lett. 91, 043905-4 (2003). [CrossRef] [PubMed]
  41. D. Faccio, A. Averchi, A. Dubietis, P. Polesana, A. Piskarskas, P. DiTrapani, and A. Couairon, "Stimulated Raman X-waves in ultrashort optical pulse filamentation," Opt. Lett. 32, 184-186 (2007). [CrossRef]
  42. D. Faccio, A. Averchi, A. Couairon, M. Kolesik, J. V. Moloney, A. Dubietis, G. Tamosauskas, P. Polesana, A. Piskarskas, and P. DiTrapani, "Spatio-temporal reshaping and X-Wave dynamics in optical filaments," Opt. Express 15, 13077-95 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MPG (1530 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited