OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 5 — Mar. 3, 2008
  • pp: 3008–3020

Emission and excitation contributions to enhanced single molecule fluorescence by gold nanometric apertures

Jérôme Wenger, Davy Gérard, José Dintinger, Oussama Mahboub, Nicolas Bonod, Evgeny Popov, Thomas W. Ebbesen, and Hervé Rigneault  »View Author Affiliations

Optics Express, Vol. 16, Issue 5, pp. 3008-3020 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1258 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We detail the role of single nanometric apertures milled in a gold film to enhance the fluorescence emission of Alexa Fluor 647 molecules. Combining fluorescence correlation spectroscopy and lifetime measurements, we determine the respective contributions of excitation and emission in the observed enhanced fluorescence. We characterize a broad range of nanoaperture diameters from 80 to 310 nm, and highlight the link between the fluorescence enhancement and the local photonic density of states. These results are of great interest to increase the effectiveness of fluorescence-based single molecule detection and to understand the interaction between a quantum emitter and a nanometric metal structure.

© 2008 Optical Society of America

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(240.6680) Optics at surfaces : Surface plasmons
(160.4236) Materials : Nanomaterials

ToC Category:
Diffraction and Gratings

Original Manuscript: January 31, 2008
Revised Manuscript: February 15, 2008
Manuscript Accepted: February 15, 2008
Published: February 20, 2008

Virtual Issues
Vol. 3, Iss. 4 Virtual Journal for Biomedical Optics

Jérôme Wenger, Davy Gérard, José Dintinger, Oussama Mahboub, Nicolas Bonod, Evgeny Popov, Thomas W. Ebbesen, and Hervé Rigneault, "Emission and excitation contributions to enhanced single molecule fluorescence by gold nanometric apertures," Opt. Express 16, 3008-3020 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. L. Barnes, "Fluorescence near interfaces: the role of photonic mode density," J. Mod. Opt. 45, 661-699 (1998). [CrossRef]
  2. J. R. Lakowicz, "Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission," Anal. Biochem. 337, 171-194 (2005). [CrossRef] [PubMed]
  3. E. Fort and S. Gresillon, "Surface enhanced fluorescence," J. Phys. D: Appl. Phys. 41, 013001 (2008). [CrossRef]
  4. P. Anger, P. Bharadwaj and L. Novotny, "Enhancement and Quenching of Single-Molecule Fluorescence," Phys. Rev. Lett. 96, 113002 (2006). [CrossRef] [PubMed]
  5. S. Kuhn, U. Hakanson, L. Rogobete and V. Sandoghdar, "Enhancement of Single-Molecule Fluorescence using a Gold Nanoparticle as an Optical Nanoantenna," Phys. Rev. Lett. 97, 017402 (2006). [CrossRef] [PubMed]
  6. J. Zhang, Y. Fu, M. H. Chowdhury, and J. R. Lakowicz, "Metal-Enhanced Single-Molecule Fluorescence on Silver Particle Monomer and Dimer: Coupling Effect between Metal Particles," Nano Lett. 7, 2101-2107 (2007). [CrossRef] [PubMed]
  7. S. Gerber, F. Reil, U. Hohenester, T. Schlagenhaufen, J. R. Krenn, and A. Leitner, "Tailoring light emission properties of fluorophores by coupling to resonance-tuned metallic nanostructures," Phys. Rev. B 75, 073404 (2007). [CrossRef]
  8. Y. Zhang, K. Aslan, M. J. R. Previte, and C. D. Geddes, "Metal-enhanced fluorescence: Surface plasmons can radiate a fluorophore’s structured emission," Appl. Phys. Lett. 90, 053107 (2007). [CrossRef]
  9. F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, "Plasmonic Enhancement of Molecular Fluorescence," Nano Lett. 7, 496-501 (2007). [CrossRef] [PubMed]
  10. J. Enderlein and T. Ruckstuhl, "The efficiency of surface-plasmon coupled emission for sensitive fluorescence detection," Opt. Express 13, 8855-8865 (2005). [CrossRef] [PubMed]
  11. J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, "Single Quantum Dot Coupled to a Scanning Optical Antenna: A Tunable Superemitter," Phys. Rev. Lett. 95, 017402 (2005). [CrossRef] [PubMed]
  12. O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. Gomez Rivas, "Strong Enhancement of the Radiative Decay Rate of Emitters by Single Plasmonic Nanoantennas," Nano Lett. 7, 2871-2875 (2007). [CrossRef] [PubMed]
  13. J. S. Biteen, D. Pacifici, N. S. Lewis and H. A. Atwater, "Enhanced Radiative Emission Rate and Quantum Efficiency in Coupled Silicon Nanocrystal-Nanostructured Gold Emitters," Nano Lett. 5, 1768-1773 (2005). [CrossRef] [PubMed]
  14. G. L. Liu, J. Kim, and L. P. Lee, "Fluorescence enhancement of quantum dots enclosed in Au nanopockets with subwavelength aperture," Appl. Phys. Lett. 89, 241118 (2006). [CrossRef]
  15. Y.-J. Hung, I. I. Smolyaninov, C. C. Davis and H.-C. Wu, "Fluorescence enhancement by surface gratings," Opt. Express 14, 10825-10830 (2006). [CrossRef] [PubMed]
  16. G. Sun, J. B. Khurgin and R. A. Soref, "Practicable enhancement of spontaneous emission using surface plasmons," Appl. Phys. Lett. 90, 111107 (2007). [CrossRef]
  17. Y. Liu and S. Blair, "Fluorescence enhancement from an array of subwavelength metal apertures," Opt. Lett. 28, 507-509 (2003). [CrossRef] [PubMed]
  18. A. G. Brolo, S. C. Kwok, M. D. Cooper, M. G. Moffitt, C.-W. Wang, R. Gordon, J. Riordon, and K. L. Kavanagh, "Surface Plasmon-Quantum Dot Coupling from Arrays of Nanoholes," J. Phys. Chem. B 110, 8307-8313 (2006). [CrossRef] [PubMed]
  19. J. H. Kim and P. J. Moyer, "Laser-induced fluorescence within subwavelength metallic arrays of nanoholes indicating minimal dependence on hole periodicity," Appl. Phys. Lett. 90, 131111 (2007). [CrossRef]
  20. U. C. Fischer, "Submicrometer aperture in a thin metal film as a probe of its microenvironment through enhanced light scattering and fluorescence," J. Opt. Soc. Am. B 3, 1239-1244 (1986). [CrossRef]
  21. H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen and P.-F. Lenne, "Enhancement of Single-Molecule Fluorescence Detection in Subwavelength Apertures," Phys. Rev. Lett. 95, 117401 (2005). [CrossRef] [PubMed]
  22. J. Wenger, B. Cluzel, J. Dintinger, N. Bonod, A.- L. Fehrembach, E. Popov, P.-F. Lenne, T. W. Ebbesen, and H. Rigneault, "Radiative and Nonradiative Photokinetics Alteration Inside a Single Metallic Nanometric Aperture," J. Phys. Chem. C 111, 11469-11474 (2007). [CrossRef]
  23. D. Gerard, J. Wenger, N. Bonod, E. Popov, H. Rigneault, F. Mahdavi, S. Blair, J. Dintinger, and T. W. Ebbesen, "Nanoaperture-enhanced fluorescence: Towards higher detection rates with plasmonic metals," Phys. Rev. B 77, 045413 (2008). [CrossRef]
  24. H. G. Craighead, "Future lab-on-a-chip technologies for interrogating individual molecules," Nature (London) 442, 387-393 (2006). [CrossRef] [PubMed]
  25. J. T. Mannion, and H. G. Craighead, "Nanofluidic Structures for Single Biomolecule Fluorescent Detection," Biopolymers 85, 131-143 (2006). [CrossRef] [PubMed]
  26. C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature (London) 445, 39-46 (2007). [CrossRef] [PubMed]
  27. M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, "Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations," Science 299, 682-686 (2003). [CrossRef] [PubMed]
  28. K. T. Samiee, M. Foquet, L. Guo, E. C. Cox, H. G. Craighead, "Lambda repressor oligomerization kinetics at high concentrations using fluorescence correlation spectroscopy in zero-mode waveguides," Biophys. J. 88, 2145-2153 (2005). [CrossRef]
  29. M. Leutenegger, M. Gosch, A. Perentes, P. Hoffmann, O. J. F. Martin, T. Lasser, "Confining the sampling volume for Fluorescence Correlation Spectroscopy using a sub-wavelength sized aperture," Opt. Express 14, 956-969 (2006). [CrossRef] [PubMed]
  30. J. Wenger, F. Conchonaud, J. Dintinger, L. Wawrezinieck, T. W. Ebbesen, H. Rigneault, D. Marguet, and P. F. Lenne, "Diffusion Analysis within Single Nanometric Apertures Reveals the Ultrafine Cell Membrane Organization," Biophys. J. 92, 913-919 (2007). [CrossRef]
  31. J. Wenger, D. G’erard, P.-F. Lenne, H. Rigneault, J. Dintinger, T. W. Ebbesen, A. Boned, F. Conchonaud, D. Marguet, "Dual-color fluorescence cross-correlation spectroscopy in a single nanoaperture : towards rapid multicomponent screening at high concentrations," Opt. Express 14, 12206-12216 (2006). [CrossRef] [PubMed]
  32. J. Widengren, R. Rigler, and U. Mets, "Triplet-state monitoring by fluorescence correlation spectroscopy," J. Fluoresc. 4, 255-258 (1994). [CrossRef]
  33. J. Widengren, U. Mets, and R. Rigler, "Fluorescence correlation spectroscopy of triplet states in solution: a theoretical and experimental study," J. Phys. Chem. 99, 13368-13379 (1995). [CrossRef]
  34. V. Buschmann, K. D. Weston, and M. Sauer, "Spectroscopic Study and Evaluation of Red-Absorbing Fluorescent Dyes," Bioconjugate Chem. 14, 195-204 (2003). [CrossRef]
  35. J. Widengren and P. Schwille, "Characterization of Photoinduced Isomerization and Back-Isomerization of the Cyanine Dye Cy5 by Fluorescence Correlation Spectroscopy," J. Phys. Chem. A 104, 6416-6428 (2000). [CrossRef]
  36. C. Zander, J. Enderlein and R. A. Keller (Eds.), Single-Molecule Detection in Solution - Methods and Applications, (VCH-Wiley, Berlin/New York, 2002). [CrossRef]
  37. F. Mahdavi, Y. Liu, and S. Blair, "Modeling Fluorescence Enhancement from Metallic Nanocavities," Plasmonics 2, 129-142 (2007). [CrossRef]
  38. E. Popov, M. Neviere, J. Wenger, P.-F. Lenne, H. Rigneault, P. Chaumet, N. Bonod, J. Dintinger, and T. W. Ebbesen, "Field enhancement in single subwavelength apertures," J. Opt. Soc. Am. A 23, 2342-2348 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited