OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 5 — Mar. 3, 2008
  • pp: 3032–3040

Counting near-infrared single-photons with 95% efficiency

Adriana E. Lita, Aaron J. Miller, and Sae Woo Nam  »View Author Affiliations

Optics Express, Vol. 16, Issue 5, pp. 3032-3040 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (296 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Single-photon detectors operating at visible and near-infrared wavelengths with high detection efficiency and low noise are a requirement for many quantum-information applications. Superconducting transition-edge sensors (TESs) are capable of detecting visible and near-infrared light at the single-photon level and are capable of discriminating between one-and two-photon absorption events; however these capabilities place stringent design requirements on the TES heat capacity, thermometry, and optical detection efficiency. We describe the fabrication and evaluation of a fiber-coupled, photon-number-resolving TES detector optimized for absorption at 1550 and 1310 nm wavelengths. The measured system detection efficiency at 1556 nm is 95 %±2 %, which to our knowledge is the highest system detection efficiency reported for a near-infrared single-photon detector.Work of US government: not subject to US copyright

© 2008 Optical Society of America

OCIS Codes
(220.0220) Optical design and fabrication : Optical design and fabrication
(270.5570) Quantum optics : Quantum detectors

ToC Category:
Quantum Optics

Original Manuscript: January 2, 2008
Revised Manuscript: February 14, 2008
Manuscript Accepted: February 16, 2008
Published: February 20, 2008

Adriana E. Lita, Aaron J. Miller, and Sae Woo Nam, "Counting near-infrared single-photons with 95% efficiency," Opt. Express 16, 3032-3040 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. L. Migdal, D. Branning, and S. Castelletto, "Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source," Phys. Rev. A 66, 053805 (2002). [CrossRef]
  2. D. Bouwmeester, "Quantum physics - high noon for photons," Nature 429, 139-141 (2004). [CrossRef] [PubMed]
  3. E. Knill, R. Laflamme, and G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature 409, 46-52 (2001). [CrossRef] [PubMed]
  4. P. A. Hiskett D. Rosenberg, C. G. Peterson, R. J. Hughes, S. Nam, A. E. Lita, A. J. Miller and J. E. Nordholt, "Long distance quantum key distribution in optical fibre," New J. Phys. 8, 193 (2006). [CrossRef]
  5. A. K. Ekert, "Quantum cryptography based on Bell’s theorem, " Phys. Rev. Lett. 67, 661-663 (1991), C.H. Bennett, G. Brassard, and N. D. Mermin, "Quantum cryptography without Bell’s theorem," Phys. Rev. Lett. 68, 557-559 (1992). [CrossRef] [PubMed]
  6. D. C. Burnham and D. L. Weinberg, "Observation of Simultaneity in Parametric Production of Optical Photon Pairs," Phys. Rev. Lett. 25, 84-87 (1970). [CrossRef]
  7. D. Rosenberg, S. Nam, A. J. Miller, A. Salminen, E. Grossman, R. E. Schwall, and J. M. Martinis, "Near-unity absorption of near-infrared light in tungsten films," Nucl. Instrum. Methods Phys. Res. A 520, 537-540, (2004). [CrossRef]
  8. B. Cabrera, R. M. Clarke, P. Colling, A. J. Miller, S. Nam, and R. W. Romani, "Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors," Appl. Phys. Lett. 73, 735-737 (1998). [CrossRef]
  9. A. J. Miller, S. Nam, J. M. Martinis and A. V. Sergienko, "Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination," Appl. Phys. Lett.,  83, 791-793 (2003). [CrossRef]
  10. D. Rosenberg, A. E. Lita, A. J. Miller and S. Nam, "Noise-free high-efficiency photon-number-resolving detectors," Phys Rev. A 71, 061803 (2005). [CrossRef]
  11. A. E. Lita, D. Rosenberg, S. Nam, A. J. Miller, D. Balzar, L. M. Kaatz, and R. E. Schwall, "Tuning of tungsten thin film superconducting transition temperature for fabrication of photon number resolving detectors," IEEE Trans. Appl. Supercond. 15, 3528-3531 (2005). [CrossRef]
  12. R. Ohba, I. Uehira and S. Kakuma, "Interferometric determination of a static optical path difference using a frequency swept laser diode," Meas. Sci. Technol. 1, 500-504 (1990). [CrossRef]
  13. K. D. Irwin, "An application of electrothermal feedback for high resolution cryogenic particle detection," Appl. Phys. Lett. 66, 1998-2000 (1995). [CrossRef]
  14. M. E. Huber, A. M. Corey, K. L. Lumpkins, F. N. Nafe, J. O. Rantschler, G. C. Hilton, J. M. Martinis, and A. H. Steinbach, "DC SQUID series arrays with intracoil damping to reduce resonance distortions," Appl. Supercond. 5, 425 (1998) [CrossRef]
  15. J. N. Ullom, W. B. Doriese, G. C. Hilton, J. A. Beall, S. Deiker, W. D. Duncan, L. Ferreira, K. D. Irwin, C. D. Reintsema, and L. R. Vale, "Characterization and reduction of unexplained noise in superconducting transition-edge sensors, "Appl. Phys. Lett. 84, 4206-4208 (2004). [CrossRef]
  16. A. J. Miller, A. E. Lita, D. Rosenberg, S. Gruber, and S. Nam, "Superconducting photon number resolving detectors: performance and promise," Proceedings of the 8th International Conference on Quantum Communication, Measurement and Computing, J. O. Hirota, H. Shapiro and M. Sasaki, Eds., NICT Press, 445-450, (2007). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited