OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 5 — Mar. 3, 2008
  • pp: 3242–3248

Terahertz quantum cascade lasers with copper metal-metal waveguides operating up to 178 K

Mikhail A. Belkin, Jonathan A. Fan, Sahand Hormoz, Federico Capasso, Suraj P. Khanna, Mohamed Lachab, A. Giles Davies, and Edmund H. Linfield  »View Author Affiliations

Optics Express, Vol. 16, Issue 5, pp. 3242-3248 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (155 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report terahertz quantum cascade lasers operating in pulsed mode at an emission frequency of 3 THz and up to a maximum temperature of 178 K. The improvement in the maximum operating temperature is achieved by using a three-quantum-well active region design with resonant-phonon depopulation and by utilizing copper, instead of gold, for the cladding material in the metal-metal waveguides.

© 2008 Optical Society of America

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.5960) Lasers and laser optics : Semiconductor lasers
(230.5590) Optical devices : Quantum-well, -wire and -dot devices

ToC Category:
Lasers and Laser Optics

Original Manuscript: November 26, 2007
Revised Manuscript: January 11, 2008
Manuscript Accepted: January 12, 2008
Published: February 25, 2008

Mikhail A. Belkin, Jonathan A. Fan, Sahand Hormoz, Federico Capasso, Suraj P. Khanna, Mohamed Lachab, A. G. Davies, and Edmund H. Linfield, "Terahertz quantum cascade lasers with copper metal-metal waveguides operating up to 178 K," Opt. Express 16, 3242-3248 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156 (2002). [CrossRef] [PubMed]
  2. B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, "3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation," Appl. Phys. Lett. 82, 1015 (2003). [CrossRef]
  3. B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, "Terahertz quantum-cascade laser at ? ? 100 ?m using metal waveguide for mode confinement," Appl. Phys. Lett. 83, 2124-2126 (2003). [CrossRef]
  4. B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, "Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode," Opt. Express 13, 3331 (2005). [CrossRef] [PubMed]
  5. A. Tredicucci, L. Mahler, T. Losco, J. Xu, C. Mauro, R. Köhler, H. E. Beere, D. A. Ritchie, and E. H.  Linfield, "Advances in THz quantum cascade lasers: fulfilling the application potential," Proc. SPIE 5738, 146 (2005). [CrossRef]
  6. C. Walther, M. Fischer, G. Scalari, R. Terazzi, N. Hoyler, and J. Faist, "Quantum cascade lasers operating from 1.2 to 1.6 THz," Appl. Phys. Lett. 91, 131122 (2007). [CrossRef]
  7. B. S. Williams, "Terahertz Quantum Cascade Lasers," Nature Photon. 1, 517-525 (2007). [CrossRef]
  8. K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, D. L. Sivco, and A. Y. Cho, "Quantum cascade lasers with double metal-semiconductor waveguide resonators," Appl. Phys. Lett. 80, 3060 (2002). [CrossRef]
  9. S. Kohen, B. S. Williams, and Q. Hu, "Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators," J. Appl. Phys. 97, 053106 (2005). [CrossRef]
  10. S. Kumar, B. S. Williams, Q. Qin, A. W. M. Lee, Q. Hu, J. L. Reno, Z. R. Wasilewski, H. C. Liu, "Terahertz quantum-cascade lasers with resonant-phonon depopulation: high temperature and low-frequency operation," in Proceedings of the Ninth International Conference on Intersubband Transitions in Quantum Wells, D. Indjin, Z. Ikonic, P. Harrison, and R.W. Kelsall, eds. (University of Leeds, Leeds, U.K., 2007), T16.
  11. K. N. Chen, A. Fan, C. S. Tan, R. Reif, and C. Y. Yen, "Microstructure evolution and abnormal grain growth during copper wafer bonding," Appl. Phys. Lett. 81, 3774 (2002). [CrossRef]
  12. M. Bahriz, V. Moreau, J. Palomo, R. Colombelli, D. A. Austin, J. W. Cockburn, L. R. Wilson, A. B. Krysa, J. R. Roberts, "Room-temperature operation of ??7.5 µm surface-plasmon quantum cascade lasers," Appl. Phys. Lett. 88, 181103 (2006). [CrossRef]
  13. M. A. Ordal, R. J. Bell, R. W. Alexander Jr., L. L. Long, and M. R. Querry, "Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V and W," Appl. Opt. 24, 4493 (1985). [CrossRef] [PubMed]
  14. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999).
  15. "Electrical Resistivity of Pure Metals," in CRC Handbook of Chemistry and Physics, 88th Edition (Internet Version 2008), D. R. Lide, ed. (CRC Press/Taylor and Francis, Boca Raton, Fla., 2008.
  16. H. Luo, S. R. Laframboise, Z. R. Wasilewski, G. C. Aers, H. C. Liu, J. C. Cao, "Terahertz quantum-cascade lasers based on a three-well active module," Appl. Phys. Lett. 90, 041112 (2007). [CrossRef]
  17. J. Faist, "Wallplug efficiency of quantum cascade lasers: Critical parameters and fundamental limits," Appl. Phys. Lett. 90, 253512 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited