OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 5 — Mar. 3, 2008
  • pp: 3261–3272

Increased wavelength options in the visible and ultraviolet for Raman lasers operating on dual Raman modes

R.P. Mildren and J.A. Piper  »View Author Affiliations

Optics Express, Vol. 16, Issue 5, pp. 3261-3272 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (305 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report increased wavelength options from Raman lasers for Raman media having two Raman modes of similar gain coefficient. For an external-cavity potassium gadolinium tungstate Raman laser pumped at 532nm, we show that two sets of Stokes orders are generated simultaneously by appropriate orientation of the Raman crystal, and also wavelengths that correspond to sums of the two Raman modes. Up to 14 visible Stokes lines were observed in the wavelength range 555-675nm. The increase in Stokes wavelengths also enables a much greater selection of wavelengths to be accessed via intracavity nonlinear sum frequency and difference frequency mixing. For example, we demonstrate 30 output wavelength options for a wavelength-selectable 271-321nm Raman laser with intracavity sum frequency mixing in BBO. We also present a theoretical analysis that enables prediction of wavelength options for dual Raman mode systems.

© 2008 Optical Society of America

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.3550) Lasers and laser optics : Lasers, Raman
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.3610) Lasers and laser optics : Lasers, ultraviolet
(140.7300) Lasers and laser optics : Visible lasers
(140.3515) Lasers and laser optics : Lasers, frequency doubled

ToC Category:
Lasers and Laser Optics

Original Manuscript: January 17, 2008
Revised Manuscript: February 20, 2008
Manuscript Accepted: February 22, 2008
Published: February 25, 2008

R. P. Mildren and J. A. Piper, "Increased wavelength options in the visible and ultraviolet for Raman lasers operating on dual Raman modes," Opt. Express 16, 3261-3272 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. W. Boyd, Nonlinear optics, 2nd ed. (Academic Press, 2003).
  2. P. Cerny, and H. Jelinkova, "Near-quantum-limit efficiency of picosecond stimulated Raman scattering in BaWO4 crystal," Opt. Lett. 27, 360-362 (2002). [CrossRef]
  3. R. P. Mildren, H. M. Pask, and J. A. Piper, "High-Efficiency Raman converter generating 1.5W of red-orange output," in Advanced Solid-State Photonics 2006 Technical Digest (Optical Society of America, 2006), paper MC3.
  4. J. T. Murray, W. L. Austin, and R. C. Powell, "Intracavity Raman conversion and Raman beam cleanup," Opt. Mater. 11, 353-371 (1999). [CrossRef]
  5. E. O. Ammann, "High-average-power Raman oscillator employing a shared-resonator configuration," Appl. Phys. Lett. 32, 52-54 (1978). [CrossRef]
  6. H. M. Pask, J. A. Piper, "Practical 580 nm source based on frequency doubling of an intracavity-Raman-shifted Nd:YAG laser," Opt. Commun. 148285-288 (1998). [CrossRef]
  7. V. A. Lisinetskii, A. S. Grabtchikov, I. A. Khodasevich, H. J. Eichler, and V. A. Orlovich, "Efficient high energy 1st, 2nd or 3rd Stokes Raman generation in IR region," Opt. Commun. 272, 509-513 (2007). [CrossRef]
  8. C. He and T. H. Chyba, "Solid-state barium nitrate Raman laser in the visible region," Opt. Commun. 135, 273-278 (1997). [CrossRef]
  9. R. P. Mildren, M. Convery, H. M. Pask, J. A. Piper, and T. Mckay, "Efficient, all-solid-state, Raman laser in the yellow, orange and red," Opt. Express 12, 785-790 (2004). [CrossRef] [PubMed]
  10. H. M. Pask, S. Myers, J. A. Piper, J. Richards, and T. McKay, "High average power, all-solid-state external resonator Raman laser," Opt. Lett. 28, 435-437 (2003). [CrossRef] [PubMed]
  11. S. Li, X. Zhang, Q. Wang, X. Zhang, Z. Cong, H. Zhang, and J. Wang, "Diode-side-pumped intracavity frequency-doubled Nd:YAG/BaWO4 Raman laser generating average output power of 3.14 W at 590 nm," Opt. Lett. 32, 2951-2953 (2007). [CrossRef] [PubMed]
  12. R. P. Mildren, H. Ogilvy and J. A. Piper, "Solid-state Raman laser generating discretely tunable ultraviolet between 266-321nm," Opt. Lett. 32, 814-816 (2007). [CrossRef] [PubMed]
  13. L. Macalik, J. Hanuza and A. A. Kaminski, "Polarized Raman spectra of the oriented NaY(WO4)2 and KY(WO4)2 single crystals," J. Molec. Struct. 555, 1891-1897 (2000). [CrossRef]
  14. J. Findeisen, H. J. Eichler, and A. A. Kaminskii, "Efficient picosecond PbWO4 and two-wavelength KGd(WO4) Raman lasers in the IR and visible," IEEE J. Quantum Electron. 35, 173-178 (1999). [CrossRef]
  15. I. V. Mochalov, "Laser and nonlinear properties of the potassium gadolinium tungstate laser crystal KGd(WO4)2:Nd3+ (KGW:Nd)," Opt. Eng. 36, 1660-1669 (1997). [CrossRef]
  16. D. von der Linde, M. Maier, and W. Kaiser, "Quantitative investigations of the stimulated Raman effect using subnanosecond light pulses," Phys. Rev. A 178, 11-17 (1969).
  17. H. M. Pask, "The design and operation of solid-state Raman lasers," Prog. Quantum Electron. 27, 1-56 (2003). [CrossRef]
  18. T. T. Basiev and R. C. Powell, "Solid-state Raman lasers," in Handbook of Laser Technology and Applications Volume II: Laser Design and Laser Systems, C. E. Webb and J.D.C. Jones, eds. (Institute of Physics UK, 2004), 469-497.
  19. P. Cerny, H. Jelinkova, P. G. Zverev, and T. T. Basiev, "Solid state lasers with Raman frequency conversion," Prog. Quantum Electron. 28, 113-143 (2004). [CrossRef]
  20. H.M. Pask and J.A. Piper, "Crystalline Raman Lasers," IEEE J. Sel. Top. Quantum Electron. 13, 692-704 (2007). [CrossRef]
  21. E.O. Ammann, "Simultaneous stimulated Raman scattering and optical frequency mixing in lithium iodate," Appl. Phys. Lett. 34, 838-846 (1979). [CrossRef]
  22. R. P. Mildren, H. M. Pask, H. Ogilvy and J. A. Piper, "Discretely tunable, all-solid-state laser in the green, yellow and red," Opt. Lett. 30, 1500-1502 (2005). [CrossRef] [PubMed]
  23. S. Ding, X. Zhang, Q. Wang, F. Su, S. Li, S. Fan, Z. Liu, J. Chang, S. Zhang, S. Wang, and Y. Liu, "Theoretical and experimental research on the multi-frequency Raman converter with KGd(WO4)2 crystal," Opt. Express 13, 10120-10128 (2005). [CrossRef] [PubMed]
  24. M. D. Martin and E. L. Thomas, "Infrared difference frequency generation," IEEE J. Quantum Electron. QE-2, 196-201 (1966). [CrossRef]
  25. D. G. Lancaster and J. M. Dawes, "Methane detection with a narrow-band source at 3.4 ?m based on a Nd:YAG pump laser and a combination of stimulated Raman scattering and difference frequency mixing," Appl. Opt. 35, 4041-4045 (1996). [CrossRef] [PubMed]
  26. D-W. Chen, "Continuous-wave tunable midwave infrared generation near 4.5?m with an intracavity optical parametric oscillator and difference frequency generation," J. Opt. Soc. Am. B 20, 1527-1531 (2003). [CrossRef]
  27. P. Canarelli, Z. Benko, R. Curl, and F.K. Tittel, "Continuous-wave infrared laser spectrometer based on difference frequency generation in AgGaS2 for high-resolution spectroscopy," J. Opt. Soc. Am. B 9, 197-202 (1992). [CrossRef]
  28. E.O. Ammann, "High-average-power Raman oscillator employing a shared-resonator configuration," Appl. Phys. Lett. 32, 52-54 (1978). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited