OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 5 — Mar. 3, 2008
  • pp: 3273–3287

Limits to compression with cascaded quadratic soliton compressors

M. Bache, O. Bang, W. Krolikowski, J. Moses, and F.W. Wise  »View Author Affiliations


Optics Express, Vol. 16, Issue 5, pp. 3273-3287 (2008)
http://dx.doi.org/10.1364/OE.16.003273


View Full Text Article

Enhanced HTML    Acrobat PDF (1226 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study cascaded quadratic soliton compressors and address the physical mechanisms that limit the compression. A nonlocal model is derived, and the nonlocal response is shown to have an additional oscillatory component in the nonstationary regime when the group-velocity mismatch (GVM) is strong. This inhibits efficient compression. Raman-like perturbations from the cascaded nonlinearity, competing cubic nonlinearities, higher-order dispersion, and soliton energy may also limit compression, and through realistic numerical simulations we point out when each factor becomes important. We find that it is theoretically possible to reach the single-cycle regime by compressing high-energy fs pulses for wavelengths λ=1.0-1.3 µm in a β-barium-borate crystal, and it requires that the system is in the stationary regime, where the phase mismatch is large enough to overcome the detrimental GVM effects. However, the simulations show that reaching single-cycle duration is ultimately inhibited by competing cubic nonlinearities as well as dispersive waves, that only show up when taking higher-order dispersion into account.

© 2008 Optical Society of America

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(320.2250) Ultrafast optics : Femtosecond phenomena
(320.5520) Ultrafast optics : Pulse compression
(320.7110) Ultrafast optics : Ultrafast nonlinear optics

ToC Category:
Ultrafast Optics

History
Original Manuscript: January 4, 2008
Revised Manuscript: February 18, 2008
Manuscript Accepted: February 22, 2008
Published: February 25, 2008

Citation
M. Bache, O. Bang, W. Krolikowski, J. Moses, and F. W. Wise, "Limits to compression with cascaded quadratic soliton compressors," Opt. Express 16, 3273-3287 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-5-3273


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. P. Agrawal, Applications of nonlinear fiber optics (Academic Press, London, 2001).
  2. L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, "Experimental observation of picosecond pulse narrowing and solitons in optical fibers," Phys. Rev. Lett. 45, 1095-1098 (1980). [CrossRef]
  3. S. Ashihara, J. Nishina, T. Shimura, and K. Kuroda, "Soliton compression of femtosecond pulses in quadratic media," J. Opt. Soc. Am. B 19, 2505-2510 (2002). [CrossRef]
  4. S. Ashihara, T. Shimura, K. Kuroda, N. E. Yu, S. Kurimura, K. Kitamura, M. Cha, and T. Taira, "Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate," Appl. Phys. Lett. 84, 1055-1057 (2004). [CrossRef]
  5. J. A. Moses, J. Nees, B. Hou, K.-H. Hong, G. Mourou, and F. W. Wise, "Chirped-pulse cascaded quadratic compression of 1-mJ, 35-fs pulses with low wavefront distortions," In Conference on Lasers and Electro-Optics, p. CTuS5 (Optical Society of America, 2005).
  6. J. Moses and F. W. Wise, "Soliton compression in quadratic media: high-energy few-cycle pulses with a frequency-doubling crystal," Opt. Lett. 31, 1881-1883 (2006). [CrossRef] [PubMed]
  7. J. Moses, E. Alhammali, J. M. Eichenholz, and F. W. Wise, "Efficient high-energy femtosecond pulse compression in quadratic media with flattop beams," Opt. Lett. 32, 2469-2471 (2007). [CrossRef] [PubMed]
  8. X. Zeng, S. Ashihara, N. Fujioka, T. Shimura, and K. Kuroda, "Adiabatic compression of quadratic temporal solitons in aperiodic quasi-phase-matching gratings," Opt. Express 14, 9358-9370 (2006). [CrossRef] [PubMed]
  9. G. Xie, D. Zhang, L. Qian, H. Zhu, and D. Tang, "Multi-stage pulse compression by use of cascaded quadratic nonlinearity," Opt. Commun. 273, 207-213 (2007). [CrossRef]
  10. M. Bache, O. Bang, J. Moses, and F.W. Wise, "Nonlocal explanation of stationary and nonstationary regimes in cascaded soliton pulse compression," Opt. Lett. 32, 2490-2492 (2007), arXiv:0706.1933. [CrossRef] [PubMed]
  11. M. Bache, J. Moses, and F. W. Wise, "Scaling laws for soliton pulse compression by cascaded quadratic nonlinearities," J. Opt. Soc. Am. B 24, 2752-2762 (2007), arXiv:0706.1507. [CrossRef]
  12. R. DeSalvo, D. Hagan, M. Sheik-Bahae, G. Stegeman, E. W. Van Stryland, and H. Vanherzeele, "Self-focusing and self-defocusing by cascaded second-order effects in KTP," Opt. Lett. 17, 28-30 (1992). [CrossRef] [PubMed]
  13. C. B. Clausen, O. Bang, and Y. S. Kivshar, "Spatial solitons and Induced Kerr effects in quasi-phase-matched Quadratic media," Phys. Rev. Lett. 78, 4749-4752 (1997). [CrossRef]
  14. X. Liu, L. Qian, and F. W. Wise, "High-energy pulse compression by use of negative phase shifts produced by the cascaded |(2) : |(2) nonlinearity," Opt. Lett. 24, 1777-1779 (1999). [CrossRef]
  15. P. Di Trapani, A. Bramati, S. Minardi, W. Chinaglia, C. Conti, S. Trillo, J. Kilius, and G. Valiulis, "Focusing versus defocusing nonlinearities due to parametric wave mixing," Phys. Rev. Lett. 87, 183902 (2001). [CrossRef]
  16. L. Berge, O. Bang, J. J. Rasmussen, and V. K. Mezentsev, "Self-focusing and solitonlike structures in materials with competing quadratic and cubic nonlinearities," Phys. Rev. E 55, 3555-3570 (1997). [CrossRef]
  17. F. O. Ilday, K. Beckwitt, Y.-F. Chen, H. Lim, and F. W. Wise, "Controllable Raman-like nonlinearities from nonstationary, cascaded quadratic processes," J. Opt. Soc. Am. B 21, 376-383 (2004). [CrossRef]
  18. N. I. Nikolov, D. Neshev, O. Bang, and W. Krolikowski, "Quadratic solitons as nonlocal solitons," Phys. Rev. E 68, 036614 (2003). [CrossRef]
  19. W. Krolikowski, O. Bang, N. Nikolov, D. Neshev, J. Wyller, J. Rasmussen, and D. Edmundson, "Modulational instability, solitons and beam propagation in spatially nonlocal nonlinear media," J. Opt. B: Quantum Semiclass. Opt. 6, s288 (2004). [CrossRef]
  20. J. Moses and F. W. Wise, "Controllable self-steepening of ultrashort pulses in quadratic nonlinear media," Phys. Rev. Lett. 97, 073903 (2006), see also arXiv:physics/0604170. [CrossRef] [PubMed]
  21. V. Dmitriev, G. Gurzadyan, and D. Nikogosyan, Handbook of Nonlinear Optical Crystals, Vol. 64 of Springer Series in Optical Sciences (Springer, Berlin, 1999).
  22. On dimensional formR(t)=R(t/Tin)/Tin, which is independent on Tin since |a,b in Eqs. (10,12) must be replaced by the dimensional form ta,b =|a,bTin. In the frequency domain both ˜R and ˜R are dimensionless.
  23. W. Krolikowski and O. Bang, "Solitons in nonlocal nonlinear media: Exact solutions," Phys. Rev. E 63, 016610 (2000). [CrossRef]
  24. M. Bache, O. Bang, and W. Krolikowski, (2008), in preparation.
  25. The factor sa on the RHS of Eq. (17) was unfortunately lost during the proofs in Eq. (12) of Ref. [10].
  26. These experiments were actually done in the nonstationary regime according to the nonlocal theory.
  27. This is a typical experimental situation: the optimal compression point zopt scales with Neff [11], and since the nonlinear crystal length is a constant parameter one adjusts the intensity so zopt coincides with the crystal length.
  28. A. W. Snyder and D. J. Mitchell, "Accessible solitons," Science 276, 1538-1541 (1997). [CrossRef]
  29. W. Krolikowski, O. Bang, J. J. Rasmussen, and J. Wyller, "Modulational instability in nonlocal nonlinear Kerr media," Phys. Rev. E 64, 016612 (2001). [CrossRef]
  30. I. V. Shadrivov and A. A. Zharov, "Dynamics of optical spatial solitons near the interface between two quadratically nonlinear media," J. Opt. Soc. Am. B 19, 596-602 (2002). [CrossRef]
  31. N. Akhmediev and M. Karlsson, "Cherenkov radiation emitted by solitons in optical fibers," Phys. Rev. A 51, 2602-2607 (1995). [CrossRef] [PubMed]
  32. D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, "Soliton self-frequency shift cancellation in photonic crystal fibers," Science 301, 1705-1708 (2003). [CrossRef] [PubMed]
  33. I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, "Dispersive wave generation by solitons in microstructured optical fibers," Opt. Express 12, 124-135 (2003). [CrossRef]
  34. K. C. Chan and M. S. F. Liu, "Short-pulse generation by higher-order soliton-effect compression: Effects of fiber characteristics," IEEE J. Quantum Electron. 31, 2226-2235 (1995). [CrossRef]
  35. K.-T. Chan and W.-H. Cao, "Improved soliton-effect pulse compression by combined action of negative thirdorder dispersion and Raman self-scattering in optical fibers," J. Opt. Soc. Am. B 15, 2371-2376.
  36. M. Bache, H. Nielsen, J. Lægsgaard, and O. Bang, "Tuning quadratic nonlinear photonic crystal fibers for zero group-velocity mismatch," Opt. Lett. 31, 1612-1614 (2006), arXiv:physics/0511244. [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited