OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 5 — Mar. 3, 2008
  • pp: 3376–3382

Mechanism initiated by nanoabsorber for UV nanosecond-pulse-driven damage of dielectric coatings

Chaoyang Wei, Jianda Shao, Hongbo He, Kui Yi, and Zhengxiu Fan  »View Author Affiliations

Optics Express, Vol. 16, Issue 5, pp. 3376-3382 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (138 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A model of plasma formation induced by UV nanosecond pulse-laser interaction with SiO2 thin film based on nanoabsorber is proposed. The model considers the temperature dependence of band gap. The numerical results show that during the process of nanosecond pulsed-laser interaction with SiO2 thin film, foreign inclusion which absorbs a fraction of incident radiation heats the surrounding host material through heat conduction causing the decrease of the band gap and consequently, the transformation of the initial transparent matrix into an absorptive medium around the inclusion, thus facilitates optical damage. Qualitative comparison with experiments is also provided.

© 2008 Optical Society of America

OCIS Codes
(140.3440) Lasers and laser optics : Laser-induced breakdown
(310.1620) Thin films : Interference coatings
(350.5400) Other areas of optics : Plasmas

ToC Category:
Lasers and Laser Optics

Original Manuscript: October 24, 2007
Revised Manuscript: December 18, 2007
Manuscript Accepted: February 5, 2008
Published: February 28, 2008

Chaoyang Wei, Jianda Shao, Hongbo He, Kui Yi, and Zhengxiu Fan, "Mechanism initiated by nanoabsorber for UV nanosecond-pulse-driven damage of dielectric coatings," Opt. Express 16, 3376-3382 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Papernov and A.W. Schmid, "Correlations between embedded single gold nanoparticles in SiO2 thin film and nanoscale crater formation induced by pulsed-laser irradiation," J. Appl. Phys. 92, 5720 (2002). [CrossRef]
  2. S. I. Kudryashov, S. D. Allen, S. Papernov, and A. W. Schmid, "Nanoscale laser-induced spallation in SiO2 films containing gold nanoparticles," Appl. Phys. B. 82, 523 (2006). [CrossRef]
  3. A. M. Rubenchik and M. D. Feit, "Initiation, Growth and Mitigation of UV laser induced damage in fused silica," Proc. SPIE 4347, 79 (2001).
  4. M. D. Feit and A. M. Rubenchik, "Implications of nanoabsorber initiators for damage probability curves, pulselength scaling and laser conditioning," Proc. SPIE 5273, 74 (2003). [CrossRef]
  5. C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, "Localized dynamics during laser-induced damage in optical materials," Phys. Rev. Lett. 92, 087401 (2004). [CrossRef] [PubMed]
  6. S. Papernov and A. W. Schmid, "Two mechanisms of crater formation in ultraviolet-pulsed-laser irradiated SiO2 thin films with artificial defects," J. Appl. Phys. 97, 114906 (2005). [CrossRef]
  7. Z. Xia, J. Shao, Z. Fan, and S. Wu, "Thermo-dynamical damage mechanism of transparent filmscaused by low power density laser pulse," Appl. Opt. 45, 825 (2006). [CrossRef]
  8. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, "Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses," Phys. Rev. Lett. 74, 2248 (1995). [CrossRef] [PubMed]
  9. C. W. Carr and J. M. Auerbach, "Effect of multiple wavelength on laser-induced damage in KH(2-x0DxPO4 crystals," Opt. Lett. 31, 595 (2006). [CrossRef] [PubMed]
  10. P. Grua, J. P. Morreeuw, and H. Becegol, "Electron kinetics and emission for metal nanopartcles exposed to intense laser pulses," Phys. Rev. B. 68, 035424 (2003). [CrossRef]
  11. M. F. Koldunov, A. A. Manenkov, and I. L. Pocotilo, "The theory of inclusion-initiated laser damage in optical materials: the thermal explosion mechanism," 1988 Laser-induced Damage in Optical Materials NIST (U. S) special publication 775, pp. 502-515 (1989).
  12. C. H. Chan, "Effective absorption for thermal blooming due to aerosols," Appl. Phys. Lett. 26, 628 (1975). [CrossRef]
  13. A. C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, "Short-pulse laser damage in transparent materials as a function of pulse duration," Phys. Rev. Lett. 82, 3883 (1999). [CrossRef]
  14. K. Saito and A. J. Ikushima, "Absorption edge in silica glass," Phys. Rev. B 62, 8584 (2000). [CrossRef]
  15. X. Zhilin, D. Degang, F. Zhengxiu, and S. Jianda, "Development in laser induced extrinsic absorption damage mechanism of dielectric films," Chin. Phy. Lett. 23, 2179 (2006). [CrossRef]
  16. L. Enke, Z. Bingsheng, L. Jinsheng et al., The Physics of Semiconductor (in Chinese), the fourth edition (National Defence Press, Beijing) 1997, pp. 28.
  17. S. Eliezer, The Interaction of High-Power Lasers with Plasmas, (Institute of Physics Publishing, Bristol and Philadelphia, 2002). [CrossRef]
  18. M. D. Feit, L. W. Hrubesh, A. M. Rubenchik, and J. Wong, "Scaling relations for laser damage initiation craters," Proc. SPIE 4347, 308 (2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited