OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 5 — Mar. 3, 2008
  • pp: 3397–3407

Eigenfunction expansion of the electric fields in the focal region of a high numerical aperture focusing system

Sherif S. Sherif, Matthew R. Foreman, and Peter Török  »View Author Affiliations

Optics Express, Vol. 16, Issue 5, pp. 3397-3407 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1416 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The Debye-Wolf electromagnetic diffraction integral is now routinely used to describe focusing by high numerical (NA) lenses. We obtain an eigenfunction expansion of the electric vector field in the focal region in terms of Bessel and generalized prolate spheroidal functions. Our representation has many optimal and desirable properties which offer considerable simplification to the evaluation and analysis of the Debye-Wolf integral. It is potentially also useful in implementing two-dimensional apodization techniques to synthesize electromagnetic field distributions in the focal region of a high NA lenses. Our work is applicable to many areas, such as optical microscopy, optical data storage and lithography.

© 2008 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(050.1960) Diffraction and gratings : Diffraction theory
(180.0180) Microscopy : Microscopy

ToC Category:
Physical Optics

Original Manuscript: January 4, 2008
Revised Manuscript: February 21, 2008
Manuscript Accepted: February 26, 2008
Published: February 28, 2008

Virtual Issues
Vol. 3, Iss. 4 Virtual Journal for Biomedical Optics

Sherif S. Sherif, Matthew R. Foreman, and Peter Török, "Eigenfunction expansion of the electric fields in the focal region of a high numerical aperture focusing system," Opt. Express 16, 3397-3407 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Richards "Diffraction in systems of high relative aperture," in Astronomical Optics and Related Subjects, Z. Kopal, ed., (North Holland Publishing Company, 1955), pp. 352-359.
  2. E. Wolf, "Electromagnetic diffraction in optical systems I. An integral representation of the image field," Proc. Roy. Soc. London A,  253, 349-357 (1959). [CrossRef]
  3. B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system," Proc. Roy. Soc. London A,  253, 358-379 (1959). [CrossRef]
  4. G. N. Watson, A Treatise on the Theory of Bessel Functions, 2nd Ed. (Cambridge University Press, 1952). [PubMed]
  5. I. S. Gradshtyen and I. M. Ryzhik, Table of Integrals, Series and Products (Academic Press, 1980).
  6. G. P. Agrawal and D. N. Pattanayak, "Gaussian beam propagation beyond the paraxial approximation," J. Opt. Soc. Am. 69, 575-578 (1979) [CrossRef]
  7. R. Kant, "An analytical solution of vector diffraction for focusing optical systems with seidel aberrations" J. Mod. Opt. 40, 2293-2310 (1993). [CrossRef]
  8. P. Töoröok, S. J. Hewlett and P. Varga, "On the series expansion of high aperture, vectorial diffraction integrals," J. Mod. Opt. 44, 493-503 (1997). [CrossRef]
  9. S. S. Sherif and P. Török, "Eigenfunction representation of the integrals of the Debye-Wolf diffraction formula," J. Mod. Opt. 52, 857-876 (2005). [CrossRef]
  10. J. J. M. Braat, P. Dirksen, A. J. E. M. Janssen, and A. S. van de Nes, "Extended Nijboer-Zernike representation of the vector field in the focal region of an aberrated high-aperture optical system," J. Opt. Soc. Am. A 20, 2281-2292 (2003). [CrossRef]
  11. C. J. R. Sheppard and P. Török, "Efficient calculation of electromagnetic diffraction in optical systems using a multipole expansion," J. Mod. Opt. 44, 803-818 (1997). [CrossRef]
  12. S. S. Sherif and P. Török, "Pupil plane masks for super-resolution in high-numerical-aperture focusing," J. Mod. Opt. 51, 2007-2019 (2004).
  13. M. R. Foreman, Department of Physics, Imperial College London, Prince Consort Rd. London SW7 2BZ, United Kingdom, S. S. Sherif, P. R. T. Munro and P. Török are preparing a manuscript to be called "Inversion of the Debye-Wolf diffraction integral using an eigenfunction representation of the electric fields in the focal region"
  14. G. Arfken, Mathematical Methods for Physicists, 3rd Edition (Academic Press, 1985).
  15. M. Abramowitz and I. Stegun, Handbook of Mathematical Functions (Dover, 1970).
  16. D. Slepian, "Prolate spheroidal wave functions, Fourier analysis and uncertainty- IV: Extensions to many dimensions; generalized prolate spheroidal functions," Bell Syst. Tech. J. 43, 3009-3057 (1964).
  17. J. C. Heurtley, "Hyperspheroidal functions-optical resonators with circular mirrors," in Proceedings of Symposium on Quasi-Optics, J. Fox, ed., (Polytechnic Press, 1964), pp. 367-371.
  18. B. R. Frieden, "Evaluation, design and extrapolation methods for optical signals, based on the prolate functions," Progress in Optics 9, E. Wolf, ed., (Pergamon, 1971), pp. 311- 407.
  19. P. Török, P. D. Higdon and T. Wilson, "On the general properties of polarised light conventional and confocal microscopes," Opt. Commun. 148,300-315 (1998) [CrossRef]
  20. S. Zhang and J. Jin, Computation of Special Functions (Wiley, 1996).
  21. P. E. Falloon, Hybrid Computation of the Spheroidal Harmonics and Application to the Generalized Hydrogen Molecular Ion Problem (University of Western Australia, 2001). [PubMed]
  22. W. Latham and M. Tilton, "Calculation of prolate functions for optical analysis," Appl. Opt. 26, 2653-2658 (1987). [CrossRef] [PubMed]
  23. P. Török and P. Munro, "The use of Gauss-Laguerre vector beams in STED microscopy," Opt. Express 12, 3605-3617 (2004).http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-15-3605 [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited