OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 5 — Mar. 3, 2008
  • pp: 3408–3419

Imaging metal oxide nanoparticles in biological structures with CARS microscopy

Julian Moger, Blair D. Johnston, and Charles R. Tyler  »View Author Affiliations

Optics Express, Vol. 16, Issue 5, pp. 3408-3419 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (3398 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Metal oxide nanomaterials are being used for an increasing number of commercial applications, such as fillers, opacifiers, catalysts, semiconductors, cosmetics, microelectronics, and as drug delivery vehicles. The effects of these nanoparticles on the physiology of animals and in the environment are largely unknown and their potential associated health risks are currently a topic of hot debate. Information regarding the entry route of nanoparticles into exposed organisms and their subsequent localization within tissues and cells in the body are essential for understanding their biological impact. However, there is currently no imaging modality available that can simultaneously image these nanoparticles and the surrounding tissues without disturbing the biological structure.Due to their large nonlinear optical susceptibilities, which are enhanced by two-photon electronic resonance, metal oxides are efficient sources of coherent anti-Stokes Raman Scattering (CARS). We show that CARS microscopy can provide localization of metal oxide nanoparticles within biological structures at the cellular level. Nanoparticles of 20–70 nm in size were imaged within the fish gill; a structure that is a primary site of pollutant uptake into fish from the aquatic environment.

© 2008 Optical Society of America

OCIS Codes
(020.4180) Atomic and molecular physics : Multiphoton processes
(160.6000) Materials : Semiconductor materials
(180.6900) Microscopy : Three-dimensional microscopy
(300.6230) Spectroscopy : Spectroscopy, coherent anti-Stokes Raman scattering
(300.6450) Spectroscopy : Spectroscopy, Raman
(160.4236) Materials : Nanomaterials

ToC Category:

Original Manuscript: January 17, 2008
Revised Manuscript: February 21, 2008
Manuscript Accepted: February 27, 2008
Published: February 28, 2008

Virtual Issues
Vol. 3, Iss. 4 Virtual Journal for Biomedical Optics

Julian Moger, Blair D. Johnston, and Charles R. Tyler, "Imaging metal oxide nanoparticles in biological structures with CARS microscopy," Opt. Express 16, 3408-3419 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Nel, T. Xia, L. Madler, and N. Li, "Toxic potential of materials at the nanolevel," Science 311, 622-627 (2006). [CrossRef] [PubMed]
  2. R. Society, Nanoscience and Nanotechnologies: Opportunities and Uncertainties, 2004). http://www.nanotec.org.uk/finalReport.htm
  3. G. Oberdörster, E. Oberdörster, and J. Oberdörster, "Nanotoxicology, An emerging discipline evolving from studies of ultrafine particles, environmental health perspective," Environ. Health Perspect. 113, 823-839 (2005). [CrossRef] [PubMed]
  4. V. L. Colvin, "The potential environmental impact of engineered nanomaterials," Nat. Biotechnol. 21, 1166-1170 (2003). [CrossRef] [PubMed]
  5. A. A. Shvedova, V. Castranova, E. R. Kisin, D. Schwegler-Berry, A. R. Murray, V. Z. Gandelsman, A. Maynard and P. Baron, "Exposure to carbon nanotube material: Assessment of nanotube cytotoxicity using human keratinocyte cells," J. Toxicol. Environ. Health, Part A 66, 1909-1926 (2003). [CrossRef]
  6. D. B. Warheit, T. R. Webb, C. M. Sayes, V. L. Colvin and K. L. Reed, "Pulmonary instillation studies with nanoscale TiO2 rods and dots in rats: Toxicity is not dependent upon particle size and surface area," Toxicol. Sci. 91, 227-236 (2006). [CrossRef] [PubMed]
  7. S. B. Lovern and R. Klaper, "Daphnia magna mortality when exposed to titanium dioxide and fullerene (C60) nanoparticles," Envir. Toxicol. Chem. 25, 1132-1137 (2006). [CrossRef]
  8. S. B. Lovern, J. R. Strickler, and R. Klaper, "Behavioural and physiological changes in Daphnia magna when exposed to nanoparticle suspension (titanium dioxide, nano-C60, and C60HxC70Hx)." Environ. Sci. Technol. 41, 4465-4470 (2007). [CrossRef] [PubMed]
  9. G. Federici, B. J. Shaw, and R. D. Handy, "Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): Gill injury, oxidative stress, and other physiological effects," Aquatic Toxicol. 84, 415-430 (2007). [CrossRef]
  10. R. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. Fercher, "Ultrahigh resolution Fourier domain optical coherence tomography," Opt. Express 12, 2156-2165 (2004). [CrossRef] [PubMed]
  11. W. Denk, J. H. Strickler, and W. W. Webb, "2-Photon Laser Scanning Fluorescence Microscopy," Science 248, 73-76 (1990). [CrossRef] [PubMed]
  12. P. J. Campagnola and L. M. Loew, "Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms," Nat. Biotechnol. 21, 1356-1360 (2003). [CrossRef] [PubMed]
  13. F. Stracke, B. Weiss, C. M. Lehr, K. Koenig, U. F. Schaefer, and M. Schneider, "Multiphoton microscopy for the investigation of dermal penetration of nanoparticle-borne drugs," J. Invest. Dermatol. 126, 2224-2233 (2006). [CrossRef] [PubMed]
  14. V. Bagalkot, L. Zhang, E. Levy-Nissenbaum, S. Jon, P. W. Kantoff, R. Langer, and O. C. Farokhzad, "Quantum dot - Aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on Bi-fluorescence resonance energy transfer," Nano Lett. 7, 3065-3070 (2007). [CrossRef] [PubMed]
  15. J. X. Cheng and X. S. Xie, "Coherent anti-Stokes Raman Scattering Microscopy: Instrumentation, Theory, and Applications," J. Phys. Chem. B 108, 827-840 (2004). [CrossRef]
  16. L. G. Rodriguez, S. J. Lockett and G. R. Holtom, "Coherent anti-stokes Raman Scattering Microscopy: A Biological Review," Cytometry, Part A 69A, 779-791 (2006). [CrossRef]
  17. E. O. Potma, X. L. Nan, E. Conor, and X. S. Xie, "Cars microscopy: Coming of age," Abstracts of Papers of the American Chemical Society 228, U291-U291 (2004).
  18. C. L. Evans, E. O. Potma, M. Puoris'haag, D. Cote, C. P. Lin, and X. S. Xie, "Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy," Proc. Natl. Acad. Sci. U.S.A. 102, 16807-16812 (2005). [CrossRef] [PubMed]
  19. C. L. Evans, X. Xu, S. Kesari, X. S. Xie, S. T. C. Wong, and G. S. Young, "Chemically-selective imaging of brain structures with CARS microscopy," Opt. Express 15, 12076-12087 (2007). [CrossRef] [PubMed]
  20. Y. Shen, The Principles of Nonlinear Optics, (John Wiley and Sons, 1984).
  21. M. C. Larciprete, D. Haertle, A. Belardini, M. Bertolotti, F. Sarto, and P. Gunter, "Characterization of second and third order optical nonlinearities of ZnO sputtered films," Appl. Phys. B 82, 431-437 (2006). [CrossRef]
  22. W. E. Torruellas, L. A. Weller-Brophy, R. Zanoni, G. I. Stegeman, Z. Osborne, and B. J. J. Zelinski, "Third-harmonic generation measurement of nonlinearities in SiO2-TiO2 sol-gel films," Appl. Phys. Lett. 58, 1128-1130 (1991). [CrossRef]
  23. X. W. Sun and H. S. Kwok, "Optical properties of epitaxially grown zinc oxide films on sapphire by pulsed laser deposition," J. Appl. Phys. 86, 408-411 (1999). [CrossRef]
  24. L. Ja-Hon, C. Yin-Jen, L. Hung-Yu, and H. Wen-Feng, "Two-photon resonance assisted huge nonlinear refraction and absorption in ZnO thin films," J. Appl. Phys. 97, 033526 (2005). [CrossRef]
  25. S. P. Kowalczyk, F. R. McFeely, L. Ley, V. T. Gritsyna, and D. A. Shirley, "The electronic structure of SrTiO3 and some simple related oxides (MgO, Al2O3, SrO, TiO2)," Solid State Communications 23, 161-169 (1977). [CrossRef]
  26. S. Tsunekawa, J. T. Wang, Y. Kawazoe, and A. Kasuya, "Blueshifts in the ultraviolet absorption spectra of cerium oxide nanocrystallites," J. Appl. Phys. 94, 3654-3656 (2003). [CrossRef]
  27. J. J. Burris and T. J. McIlrath, "Theoretical study relating the two-photon absorption cross section to the susceptibility controlling four-wave mixing," J. Opt. Soc. Am. B 2, 1313 (1985). [CrossRef]
  28. E. W. Van Stryland, M. A. Woodall, H. Vanherzeele, and M. J. Soileau, "Energy band-gap dependence of two-photon absorption," Opt. Lett. 10, 490 (1985). [CrossRef] [PubMed]
  29. A. Majewska, G. Yiu, and R. Yuste, "A custom-made two-photon microscope and deconvolution system," Pflugers Arch. Eur. J. Physiol. 441, 398-408 (2000). [CrossRef]
  30. H. F. Wang, Y. Fu, P. Zickmund, R. Y. Shi, and J. X. Cheng, "Coherent anti-Stokes Raman Scattering Imaging of axonal myelin in live spinal tissues," Biophys. J. 89, 581-591 (2005). [CrossRef] [PubMed]
  31. OsiriX , "http://www.osirix-viewer.com/,"
  32. G. M. Hughes and A. V. Grimston, "Fine Structure of Secondary Lamellae of Gills of Gadus Pollachius," Q. J. Microsc. Sci. 106, 343-353 (1965).
  33. G. M. Hughes and S. F. Perry, "Morphometric study of Trout Gills - Light-Microscopic Method suitable for evaluation of pollutant action," J. Exp. Biol. 64, 447-460 (1976).
  34. G. G. Goss, S. F. Perry, J. N. Fryer, and P. Laurent, "Gill morphology and acid-base regulation in freshwater fishes," Comp. Biochem. Physiol. Part A. Mol. Integr. Physiol. 119, 107-115 (1998). [CrossRef]
  35. S. S. Sobin, H. M. Tremer, and Y. C. Fung, "Morphometric basis of sheet-flow concept of Pulmonary Alveolar Microcirculation in Cat," Circ. Res. 26, 397-414 (1970). [PubMed]
  36. J. X. Cheng, "Theoretical and experimental characterisation of Coherent anti-Stokes Raman Scattering (CARS) Microscopy," J. Opt. Soc. Am. B 19, 1363-1375 (2002). [CrossRef]
  37. A. Volkmer, J. X. Cheng and X. S. Xie, "Vibrational imaging with high sensitivity via epidetected Coherent anti-Stokes Raman Scattering Microscopy," Phys. Rev. Lett. 87, 023901 (2001).
  38. G. O. Clay, A. C. Millard, C. B. Schaffer, J. Aus-Der-Au, P. S. Tsai, J. A. Squier, and D. Kleinfeld, "Spectroscopy of third-harmonic generation: evidence for resonances in model compounds and ligated hemoglobin," J. Opt. Soc. Am. B 23, 932-950 (2006). [CrossRef]
  39. H. Kudo, A. Kato, and S. Hirose, "Fluorescence visualization of branchial collagen columns embraced by pillar cells," J. Histochem. Cytochem. 55, 57-62 (2007). [CrossRef]
  40. D. Gachet, F. Billard, N. Sandeau, and H. Rigneault, "Coherent anti-Stokes Raman Scattering (CARS) Microscopy imaging atinterfaces: evidence of interference effects," Opt. Express 15, 10408-10420 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (3131 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited