OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 5 — Mar. 3, 2008
  • pp: 3456–3462

Physical basis for wideband resonant reflectors

Robert Magnusson and Mehrdad Shokooh-Saremi  »View Author Affiliations


Optics Express, Vol. 16, Issue 5, pp. 3456-3462 (2008)
http://dx.doi.org/10.1364/OE.16.003456


View Full Text Article

Enhanced HTML    Acrobat PDF (263 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we address resonant leaky-mode reflectors made with a periodic silicon layer on an insulating substrate. Our objective is to explain the physical basis for their operation and to quantify the bandwidth provided by a single resonant layer by illustrative examples for both TE and TM polarized incident light. We find that the number of participating leaky modes and their excitation conditions affect the bandwidth. We show that recently reported experimental [1, 2] wideband reflectors operate under leaky-mode resonance. These compact reflectors are new elements with many potential applications in photonic systems. The results presented explaining their physical basis will aid in their continued development.

© 2008 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(130.2790) Integrated optics : Guided waves
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

History
Original Manuscript: December 10, 2007
Revised Manuscript: February 23, 2008
Manuscript Accepted: February 24, 2008
Published: February 29, 2008

Citation
Robert Magnusson and Mehrdad Shokooh-Saremi, "Physical basis for wideband resonant reflectors," Opt. Express 16, 3456-3462 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-5-3456


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, "Broad-band mirror (1.12-1.62 ?m) using a subwavelength grating," IEEE Photon. Technol. Lett. 16, 1676-1678 (2004). [CrossRef]
  2. M. C. Y Huang, Y. Zhou, and C. J. Chang-Hasnain, "A surface-emitting laser incorporating a high-index- contrast subwavelength grating," Nature Photonics 1, 119-122 (2007). [CrossRef]
  3. P. Vincent and M. Neviere, "Corrugated dielectric waveguides: A numerical study of the second-order stop bands," Appl. Phys. 20, 345-351 (1979). [CrossRef]
  4. L. Mashev and E. Popov, "Zero order anomaly of dielectric coated gratings," Opt. Comm. 55, 377-380 (1985). [CrossRef]
  5. E. Popov, L. Mashev, and D. Maystre, "Theoretical study of anomalies of coated dielectric gratings," Opt. Acta 33, 607-619 (1986). [CrossRef]
  6. G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, "Total reflection of light from a corrugated surface of a dielectric waveguide," Sov. J. Quantum Electron. 15, 886-887 (1985). [CrossRef]
  7. I. A. Avrutsky and V. A. Sychugov, "Reflection of a beam of finite size from a corrugated waveguide," J. Mod. Opt. 36, 1527-1539 (1989). [CrossRef]
  8. R. Magnusson and S. S. Wang, "New principle for optical filters," Appl. Phys. Lett. 61,1022-1024 (1992). [CrossRef]
  9. S. S. Wang and R. Magnusson, "Theory and applications of guided-mode resonance filters," Appl. Opt. 32,2606-2613 (1993). [CrossRef] [PubMed]
  10. Y. Ding and R. Magnusson, "Resonant leaky-mode spectral-band engineering and device applications," Opt. Express 12, 5661-5674 (2004). [CrossRef] [PubMed]
  11. H. A. Macleod, Thin-Film Optical Filters, (McGraw-Hill, New York, 1989).
  12. Q4. A. E. Willner, "All mirrors are not created equal," Nature Photonics 1, 87-88 (2007). [CrossRef]
  13. A. Yariv and P. Yeh., Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford University Press, New York, 2007).
  14. A. Hardy, D. F. Welch, and W. Streifer, "Analysis of second-order gratings," IEEE J. Quantum Electron. 25, 2096-2105 (1989). [CrossRef]
  15. Y. Ding and R. Magnusson, "Band gaps and leaky-wave effects in resonant photonic-crystal waveguides," Opt. Express 15, 680-694 (2007). [CrossRef] [PubMed]
  16. D. Rosenblatt, A. Sharon, and A. A. Friesem, "Resonant grating waveguide structures," IEEE J. Quantum Electron. 33, 2038-2059 (1997). [CrossRef]
  17. R. F. Kazarinov and C. H. Henry, "Second-order distributed feedback lasers with mode selection provided by first-order radiation loss," IEEE J. Quantum Electron. 21, 144-150 (1985). [CrossRef]
  18. T. K. Gaylord and M. G. Moharam, "Analysis and applications of optical diffraction by gratings," Proc. IEEE 73, 894-937 (1985). [CrossRef]
  19. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, "Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: Enhanced transmittance matrix approach," J. Opt. Soc. Am. A 12, 1077-1086 (1995). [CrossRef]
  20. S. T. Peng, T. Tamir, and H. L. Bertoni, "Theory of periodic dielectric waveguides," IEEE Trans. Microwave Theory Tech. 23, 123-133 (1975). [CrossRef]
  21. R. Eberhart and J. Kennedy, "Particle swarm optimization," in Proceedings of IEEE Conference on Neural Networks (IEEE, 1995) 1942-1948.
  22. M. Shokooh-Saremi and R. Magnusson, "Particle swarm optimization and its application to the design of diffraction grating filters," Opt. Lett. 32, 894-896 (2007). [CrossRef] [PubMed]
  23. C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, "Ultrabroadband mirror using low-index cladding subwavelength grating," IEEE Photon. Technol. Lett. 16, 518-520 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited