OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 6 — Mar. 17, 2008
  • pp: 3504–3514

The analytical vectorial structure of a nonparaxial Gaussian beam close to the source

Guoquan Zhou  »View Author Affiliations

Optics Express, Vol. 16, Issue 6, pp. 3504-3514 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (881 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The description of a nonparaxial Gaussian beam is made directly staring with the Maxwell’s equations. The vector angular spectrum method is used to resolve the Maxwell’s equations. As the vector angular spectrum can be decomposed into the two terms in the frequency domain, the nonparaxial Gaussian beam is also expressed as a sum of two terms. One term is the electric field transverse to the propagation axis, and the other term is the associated magnetic field transverse to the propagation axis. By means of mathematical techniques, the analytical expressions for the two terms in the source region have been derived without any approximation. The influence of the evanescent plane wave on the vectorial structure is also investigated. The results are analyzed with numerical example. This research is useful to the optical trapping and the optical manipulation.

© 2008 Optical Society of America

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(260.5430) Physical optics : Polarization
(350.5500) Other areas of optics : Propagation

ToC Category:
Physical Optics

Original Manuscript: January 17, 2008
Revised Manuscript: February 10, 2008
Manuscript Accepted: February 29, 2008
Published: March 3, 2008

Virtual Issues
Vol. 3, Iss. 4 Virtual Journal for Biomedical Optics

Guoquan Zhou, "The analytical vectorial structure of a nonparaxial Gaussian beam close to the source," Opt. Express 16, 3504-3514 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Varjú, A. P. Kovács, K. Osvay, and G. Kurdi, "Angular dispersion of femtosecond pulses in a Gaussian beam," Opt. Lett. 27, 2034-2036 (2002). [CrossRef]
  2. V. Delaubert, N. Treps, C. C. Harb, P. K. Lam, and H. -A. Bachor, "Quantum measurements of spatial conjugate variables: displacement and tilt of a Gaussian beam," Opt. Lett. 31, 1537-1539 (2006). [CrossRef] [PubMed]
  3. A. Ashkin, "Optical trapping and manipulation of neutral particles using lasers," Proc. Natl. Acad. Sci. U.S.A. 94, 4853-4860 (1997). [CrossRef] [PubMed]
  4. R. Simon, E. C. G. Sudarshan, and N. Mukunda, "Gaussian-Maxwell beams," J. Opt. Soc. Am. A 3, 536-540 (1986). [CrossRef]
  5. Dennis G. Hall, "Vector-beam solutions of Maxwell’s wave equation," Opt. Lett. 21, 9-11 (1996). [CrossRef] [PubMed]
  6. S. R. Seshadri, "Electromagnetic Gaussian beam," J. Opt. Soc. Am. A 15, 2712-2719 (1998). [CrossRef]
  7. C. J. R. Sheppard and S. Saghafi, "Electromagnetic Gaussian beams beyond the paraxial approximation," J. Opt. Soc. Am. A 16, 1381-1386 (1999). [CrossRef]
  8. R. Martínez-Herrero, P. Mejías, S. Bosch, and A. Carnicer, "Vectorial structure of nonparaxial electromagnetic beams," J. Opt. Soc. Am. A 18, 1678-1680 (2001). [CrossRef]
  9. P. M. Mejías, R. Martínez-Herrero, G. Piquero, and J. M. Movilla, "Parametric characterization of the spatial structure of non-uniformly polarized laser beams," Prog. Quantum Electron. 26, 65-130 (2002). [CrossRef]
  10. H. Guo, J. Chen and S. Zhuang, "Vector plane wave spectrum of an arbitrary polarized electromagnetic wave," Opt. Express 14, 2095-2100 (2006). [CrossRef] [PubMed]
  11. G. Zhou, "Analytical vectorial structure of Laguerre-Gaussian beam in the far field," Opt. Lett. 31, 2616-2618 (2006). [CrossRef] [PubMed]
  12. G. Zhou, L. Chen, and Y. Ni, "Vectorial structure of non-paraxial linearly polarized Gaussian beam in far field," Chin. Phys. Lett. 23, 1180-1183 (2006). [CrossRef]
  13. G. Zhou, K. Zhu, F. Liu, "Analytical structure of the TE and TM terms of paraxial Gaussian beam in the near field," Opt. Commun. 276, 37-43 (2007). [CrossRef]
  14. P. C. Chaument, "Fully vectorial highly nonparaxial beam clost to the waist," J. Opt. Soc. Am. A 23, 3197-3202 (2007). [CrossRef]
  15. A. E. Siegman, Lasers (University Science Books, Mill Valley, CA, 1986), Chaps. 16-17.
  16. P. W. Milonni and J. H. Eberly, Lasers (Wiley Interscience, New York, 1988), sec. 14.5.
  17. C. G. Chen, P. T. Konkola, J. Ferrera, R. K. Heilmann, and M. L. Schattenburg, "Analyses of vector Gaussian beam propagation and the validity of paraxial and spherical approximations," J. Opt. Soc. Am. A 19, 404-412 (2002). [CrossRef]
  18. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, (Academic Press, New York, 1980), p. 952.
  19. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, corrected and enlarged edition (Academic press, New York, 1980), p. 951.
  20. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, corrected and enlarged edition (Academic press, New York, 1980), pp. 1064-1067.
  21. G. P. M. Poppe and C. M. J. Wijers, "More efficient computation of the complex error function," ACM Trans. Math. Software 16, 38-46 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited