OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 6 — Mar. 17, 2008
  • pp: 3644–3651

Harnessing and control of optical rogue waves in supercontinuum generation

John. M. Dudley, Goëry Genty, and Benjamin J. Eggleton  »View Author Affiliations

Optics Express, Vol. 16, Issue 6, pp. 3644-3651 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1424 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a numerical study of the evolution dynamics of “optical rogue waves”, statistically-rare extreme red-shifted soliton pulses arising from supercontinuum generation in photonic crystal fiber [D. R. Solli et al. Nature 450, 1054–1058 (2007)]. Our specific aim is to use nonlinear Schrödinger equation simulations to identify ways in which the rogue wave dynamics can be actively controlled, and we demonstrate that rogue wave generation can be enhanced by an order of magnitude through a small modulation across the input pulse envelope and effectively suppressed through the use of a sliding frequency filter.

© 2008 Optical Society of America

OCIS Codes
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(190.4370) Nonlinear optics : Nonlinear optics, fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: January 10, 2008
Revised Manuscript: February 17, 2008
Manuscript Accepted: February 19, 2008
Published: March 4, 2008

John M. Dudley, Goëry Genty, and Benjamin J. Eggleton, "Harnessing and control of optical rogue waves in supercontinuum generation," Opt. Express 16, 3644-3651 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25-27 (2000). [CrossRef]
  2. A. V. Husakou and J. Herrmann, "Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers," Phys. Rev. Lett. 87, 203901 (2001). [CrossRef] [PubMed]
  3. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber," Opt. Lett. 26, 1356-1358 (2001). [CrossRef]
  4. A. L. Gaeta, "Nonlinear propagation and continuum generation in microstructured optical fibers," Opt. Lett. 27, 924-926 (2002). [CrossRef]
  5. A. V. Avdokhin, S. V. Popov, and J. R. Taylor, "Continuous-wave, high-power, Raman continuum generation in holey fibers," Opt. Lett. 28, 1353-1355 (2003). [CrossRef] [PubMed]
  6. J. N. Kutz, C. Lyngå, and B. Eggleton, "Enhanced Supercontinuum Generation through Dispersion-Management," Opt. Express 13, 3989-3998 (2005). [CrossRef] [PubMed]
  7. J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006). [CrossRef]
  8. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstructure fiber," Phys. Rev. Lett. 90, 113904 (2003). [CrossRef] [PubMed]
  9. G. Chang, T. B. Norris, and H. G. Winful, "Optimization of supercontinuum generation in photonic crystal fibers for pulse compression," Opt. Lett. 28, 546-548 (2003). [CrossRef] [PubMed]
  10. T. Schreiber, J. Limpert, H. Zellmer, A. Tünnermann, and K. P. Hansen, "High average power supercontinuum generation in photonic crystal fibers," Opt. Commun. 228, 71-78 (2003). [CrossRef]
  11. F. Vanholsbeeck, S. Martín-López, M. González-Herráez, and S. Coen, "The role of pump incoherence in continuous-wave supercontinuum generation," Opt. Express 13, 6615-6625 (2005). [CrossRef] [PubMed]
  12. M. H. Frosz, O. Bang, and A. Bjarklev, "Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation," Opt. Express 14, 9391-9407 (2006). [CrossRef] [PubMed]
  13. N. R. Newbury, B. R. Washburn, K. L. Corwin, and R. S. Windeler, "Noise amplification during supercontinuum generation in microstructure fiber," Opt. Lett. 28, 944-946 (2003). [CrossRef] [PubMed]
  14. S. M. Kobtsev and S. V. Smirnov, "Coherent properties of super-continuum containing clearly defined solitons," Opt. Express 14, 3968-3980 (2006). [CrossRef] [PubMed]
  15. D. Türke, S. Pricking, A. Husakou, J. Teipel, J. Herrmann, and H. Giessen, "Coherence of subsequent supercontinuum pulses generated in tapered fibers in the femtosecond regime," Opt. Express 15, 2732-2741 (2007). [CrossRef] [PubMed]
  16. A. Demircan and U. Bandelow, "Analysis of the interplay between soliton fission and modulation instability in supercontinuum generation," Appl. Phys. B 86, 31-39 (2007). [CrossRef]
  17. D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, "Optical Rogue Waves," Nature 450, 1054-1058 (2007). [CrossRef] [PubMed]
  18. M. Hopkin, "Sea snapshots will map frequency of freak waves," Nature 430, 492 (2004). [CrossRef] [PubMed]
  19. T. B. Benjamin and J. E. Feir, "The disintegration of wavetrains in deep water," Part 1, J. Fluid Mech. 27,417-430 (1967). [CrossRef]
  20. A. I. Dyachenko and V. E. Zakharov, "Modulation instability of Stokes wave implies a freak wave," JETP Lett. 81, 255-259 (2005). [CrossRef]
  21. M. Onorato, A. R. Osborne, and M. Serio, "Modulational instability in crossing sea states: A possible mechanism for the formation of freak waves," Phys. Rev. Lett. 96, 014503 (2006). [CrossRef] [PubMed]
  22. B. Kibler, J. M. Dudley, and S. Coen, "Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area," Appl. Phys. B 81, 337-342 (2005). [CrossRef]
  23. S. Coles, An Introduction to Statistical Modeling of Extreme Values, (Springer-Verlag, London, 2001).
  24. The three parameter Weibull distribution is described by the probability density function f(x) = ?/? [(x-?)/?]??1 exp(- [(x-?)/?]?) , defined on ? <x< +¥ where ?, ?, ? are shape, scale and location parameters respectively. For this data, maximum likelihood estimation yields parameters: ?=0.4515, ?=40.11, ?=0.004719. The compatibility of this distribution with the data in Fig. 1(c) was confirmed using a Kolmogorov-Smirnov test, and the null hypothesis was accepted at the 0.05 significance level. The fit in Fig. 1(c) is normalized for comparison with the histogram.
  25. D. I. Yeom and B. J. Eggleton, "Photonics: rogue waves surface in light," Nature 450, 953-954 (2007). [CrossRef] [PubMed]
  26. E. J. Greer, D. M. Patrick, P. G. J. Wigley and J. R. Taylor, "Generation of 2 THz repetition rate pulse trains through induced modulational instability," Electron. Lett. 25, 1246-1248 (1989). [CrossRef]
  27. P. V. Mamyshev, S. V. Chernikov and E. M. Dianov, "Generation of fundamental soliton trains for high-bit-rate optical fiber communication lines," IEEE J. Quantum Electron. 27, 2347-2355 (1991). [CrossRef]
  28. E. Seve, G. Millot and S. Wabnitz, "Buildup of terahertz vector dark-soliton trains from induced modulation instability in highly birefringent optical fiber," Opt. Lett. 23, 1829-1831 (1998). [CrossRef]
  29. L. P. Barry, J. M. Dudley, B. C. Thomsen and J. D. Harvey, "Frequency-resolved optical gating measurement of 1.4 THz beat frequencies from dual wavelength self-seeded gain-switched laser diode," Electron. Lett. 34, 988-990 (1998). [CrossRef]
  30. J. M. Dudley, F. Gutty, S. Pitois, G. Millot, "Complete characterization of terahertz pulse trains generated from nonlinear processes in optical fibers," IEEE J. Quantum Electron. 37, 587-594 (2001). [CrossRef]
  31. J. Fatome, S. Pitois and G. Millot, "20 GHz to 1 THz repetition rate pulse sources based on multiple four wave mixing in optical fibers," IEEE J. Quantum Electron. 42, 1038-1046 (2006). [CrossRef]
  32. A. S. Y. Hsieh, G. K. L. Wong, S. G. Murdoch, S. Coen, F. Vanholsbeeck, R. Leonhardt, and J. D. Harvey, "Combined effect of Raman and parametric gain on single-pump parametric amplifiers," Opt. Express 15, 8104-8114 (2007). [CrossRef] [PubMed]
  33. B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spälter, and T. A. Strasser, "Grating resonances in air-silica microstructured optical fibers," Opt. Lett. 24, 1460-1462 (1999). [CrossRef]
  34. Y. Li, F. Salisbury, Z. Zhu, T. Brown, P. Westbrook, K. Feder, and R. Windeler, "Interaction of supercontinuum and Raman solitons with microstructure fiber gratings," Opt. Express 13, 998-1007 (2005). [CrossRef] [PubMed]
  35. D. I. Yeom, J. A. Bolger, G. D. Marshall, D. R. Austin, B. T. Kuhlmey, M. J. Withford, C. M. de Sterke, and B. J. Eggleton, "Tunable spectral enhancement of fiber supercontinuum," Opt. Lett. 32, 1644-1646 (2007). [CrossRef] [PubMed]
  36. J. A. Bolger, F. Luan, D.-I. Yeom, E. N. Tsoy, C. M. de Sterke, and B. J. Eggleton, "Tunable enhancement of a soliton spectrum using an acoustic long-period grating," Opt. Express 15, 13457-13462 (2007). [CrossRef] [PubMed]
  37. D. I. Yeom, E. C. Mägi, M. R. E. Lamont, L. B. Fu, B. J. Eggleton, "Low-threshold supercontinuum generation in dispersion engineered highly nonlinear chalcogenide fiber nanowires," Optical Fiber Communications Conference, San Diego, February 2008, Paper OTuB5 (2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited