OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 6 — Mar. 17, 2008
  • pp: 3701–3711

A MEMS light modulator based on diffractive nanohole gratings

Jack L. Skinner, A. Alec Talin, and David A. Horsley  »View Author Affiliations


Optics Express, Vol. 16, Issue 6, pp. 3701-3711 (2008)
http://dx.doi.org/10.1364/OE.16.003701


View Full Text Article

Enhanced HTML    Acrobat PDF (972 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present the design, fabrication, and testing of a microelectromechanical systems (MEMS) light modulator based on pixels patterned with periodic nanohole arrays. Flexure-suspended silicon pixels are patterned with a two dimensional array of 150 nm diameter nanoholes using nanoimprint lithography. A top glass plate assembled above the pixel array is used to provide a counter electrode for electrostatic actuation. The nanohole pattern is designed so that normally-incident light is coupled into an in-plane grating resonance, resulting in an optical stop-band at a desired wavelength. When the pixel is switched into contact with the top plate, the pixel becomes highly reflective. A 3:1 contrast ratio at the resonant wavelength is demonstrated for gratings patterned on bulk Si substrates. The switching time is 0.08 ms and the switching voltage is less than 15V.

© 2008 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(230.4110) Optical devices : Modulators
(160.3918) Materials : Metamaterials
(160.4236) Materials : Nanomaterials
(050.6624) Diffraction and gratings : Subwavelength structures
(230.7408) Optical devices : Wavelength filtering devices

ToC Category:
Diffraction and Gratings

History
Original Manuscript: January 14, 2008
Revised Manuscript: February 28, 2008
Manuscript Accepted: March 1, 2008
Published: March 5, 2008

Citation
Jack L. Skinner, A. Alec Talin, and David A. Horsley, "A MEMS light modulator based on diffractive nanohole gratings," Opt. Express 16, 3701-3711 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-6-3701


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. B. Sampsell, "Digital micromirror device and its application to projection displays," J. Vac. Sci. Technol. B 12, 3242-3246 (1994). [CrossRef]
  2. M. W. Miles, "MEMS-based interferometric modulator for display applications," Proc. SPIE 3876, 20-28 (1999). [CrossRef]
  3. S. D. Senturia, D. R. Day, M. A. Butler, and M. C. Smith, "Programmable diffraction gratings and their uses in displays, spectroscopy, and communications," J. Microlithogr. Microfabr. Microsyst. 4, 041401-041406 (2005). [CrossRef]
  4. I. W. Jung, J. S. Wang, and O. Solgaard, "Optical pattern generation using a, spatial light modulator for maskless lithography," IEEE J. Sel. Top. Quantum Electron. 13, 147-154 (2007). [CrossRef]
  5. D. Rosenblatt, A. Sharon, and A. A. Friesem, "Resonant grating waveguide structures," IEEE J. Quantum Electron. 33, 2038-2059 (1997). [CrossRef]
  6. Y. Kanamori, M. Shimono, and K. Hane, "Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrates," IEEE Photon. Technol. Lett. 18, 2126-2128 (2006). [CrossRef]
  7. W. Suh, O. Solgaard, and S. Fan, "Displacement sensing using evanescent tunneling between guided resonances in photonic crystal slabs," J. Appl. Phys. 98, 033102 (2005). [CrossRef]
  8. Y. Kanamori, T. Kitani, and K. Hane, "Control of guided resonance in a photonic crystal slab using microelectromechanical actuators," Appl. Phys. Lett. 90, 031911 (2007). [CrossRef]
  9. S. Y. Chou, P. R. Krauss, W. Zhang, L. Guo, and L. Zhuang, "Sub-10 nm imprint lithography and applications," J. Vac. Sci. Technol. B 15, 2897 (1997). [CrossRef]
  10. R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Proc. Phys. Soc. London 18, 269-275 (1902). [CrossRef]
  11. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998). [CrossRef]
  12. K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Influence of hole size on the extraordinary transmission through subwavelength hole arrays," Appl. Phys. Lett. 85, 4316-4318 (2004). [CrossRef]
  13. J. M. Huang, K. M. Liew, C. H. Wong, S. Rajendran, M. J. Tan, and A. Q. Liu, "Mechanical design and optimization of capacitive micromachined switch," Sens. Actuators A 93, 273-285 (2001). [CrossRef]
  14. C. Goldsmith, J. Ehmke, A. Malczewski, B. Pillans, S. Eshelman, Z. Yao, J. Brank, and M. Eberly, "Lifetime characterization of capacitive RF MEMS switches," IEEE MTT-S Int. Microwave Symp. Dig. 3, 227-230 (2001).
  15. W. M. Van Spengen, R. Puers, R. Mertens, and I. De Wolf, "A comprehensive model to predict the charging and reliability of capacitive RF MEMS switches," J. Micromech. Microeng. 14, 514-521 (2004). [CrossRef]
  16. J. R. Reid, R. T. Webster, and L. A. Starman, "Noncontact measurement of charge induced voltage shift in capacitive MEM-switches," IEEE Microwave Wirel. Compon. Lett. 13, 367-369 (2003). [CrossRef]
  17. P. G. Steeneken, T. G. S. M. Rijks, J. T. M. Van Beek, M. J. E. Ulenaers, J. De Coster, and R. Puers, "Dynamics and squeeze film gas damping of a capacitive RF MEMS switch," J. Micromech. Microeng. 15, 176-184 (2005). [CrossRef]
  18. S. Chowdhury, M. Ahmadi, and W. C. Miller, "A closed-form model for the pull-in voltage of electrostatically actuated cantilever beams," J. Micromech. Microeng. 15, 756-763 (2005). [CrossRef]
  19. J. B. Muldavin, "Design and analysis of series and shunt MEMS switches," Ph.D. dissertation, Dept. Elect. Eng. Comput. Sci., Univ. Michigan, Ann Arbor, MI (2001).
  20. J. J. Blech, "On isothermal squeeze films," J. Lubr. Technol. 105, 615-620 (1983). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (930 KB)     
» Media 2: AVI (880 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited