OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 6 — Mar. 17, 2008
  • pp: 3712–3726

Optical deflection and sorting of microparticles in a near-field optical geometry

R. F. Marchington, M. Mazilu, S. Kuriakose, V. Garcés-Chávez, P. J. Reece, T. F. Krauss, M. Gu, and K. Dholakia  »View Author Affiliations

Optics Express, Vol. 16, Issue 6, pp. 3712-3726 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1788 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Near-field optical micromanipulation permits new possibilities for controlled motion of trapped objects. In this work, we report an original geometry for optically deflecting and sorting micro-objects employing a total internal reflection microscope system. A small beam of laser light is delivered off-axis through a total internal reflection objective which creates an elongated evanescent illumination of light at a glass/water interface. Asymmetrical gradient and scattering forces from this light field are seen to deflect and sort polystyrene microparticles within a fluid flow. The speed of the deflected objects is dependent upon their intrinsic properties. We present a finite element method to calculate the optical forces for the evanescent waves. The numerical simulations are in good qualitative agreement with the experimental observations and elucidate features of the particle trajectory. In the size range of 1 µm to 5 µm in diameter, polystyrene spheres were found to be guided on average 2.9 ± 0.7 faster than silica spheres. The velocity increased by 3.00.5 µms−1 per µm increase in diameter for polystyrene spheres and 0.7 ± 0.2 µms−1 per µm for silica. We employ this size dependence for performing passive optical sorting within a microfluidic chip and is demonstrated in the accompanying video.

© 2008 Optical Society of America

OCIS Codes
(240.6690) Optics at surfaces : Surface waves
(260.6970) Physical optics : Total internal reflection
(180.4243) Microscopy : Near-field microscopy
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: October 5, 2007
Revised Manuscript: February 6, 2008
Manuscript Accepted: February 15, 2008
Published: March 6, 2008

Virtual Issues
Vol. 3, Iss. 4 Virtual Journal for Biomedical Optics

R. F. Marchington, M. Mazilu, S. Kuriakose, V. Garcés-Chávez, P. J. Reece, T. F. Krauss, M. Gu, and K. Dholakia, "Optical deflection and sorting of microparticles in a near-field optical geometry," Opt. Express 16, 3712-3726 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Gu, J. B. Haumonte, Y. Micheau, J. W. M. Chon, and X. S. Gan, "Laser trapping and manipulation under focused evanescent wave illumination," Appl. Phys. Lett. 84, 4236-4238 (2004). [CrossRef]
  2. V. Garcés-Chávez, K. Dholakia, and G. C. Spalding, "Extended-area optically induced organization of microparticies on a surface," Appl. Phys. Lett. 86, 031106 (2005). [CrossRef]
  3. V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, "Extended organization of colloidal microparticles by surface plasmon polariton excitation," Phys. Rev. B 73, 085417 (2006). [CrossRef]
  4. P. J. Reece, V. Garcés-Chávez, and K. Dholakia, "Near-field optical micromanipulation with cavity enhanced evanescent waves," Appl. Phys. Lett. 88, 221116 (2006). [CrossRef]
  5. S. Kawata and T. Tani, "Optically driven mie particles in an evanescent field along a channeled waveguide," Opt. Lett. 21, 1768-1770 (1996). [CrossRef] [PubMed]
  6. K. Dholakia, W. M. Lee, L. Paterson, M. P. MacDonald, R. McDonald, I. Andreev, P. Mthunzi, C. T. A. Brown, R. F. Marchington, and A. C. Riches, "Optical separation of cells on potential energy landscapes: Enhancement with dielectric tagging," IEEE J. Sel. Top. Quantum Electron. 13, 1646-1654 (2007). [CrossRef]
  7. M. P. MacDonald, G. C. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice," Nature 426, 421-424 (2003). [CrossRef] [PubMed]
  8. K. Ladavac, K. Kasza, and D. G. Grier, "Sorting mesoscopic objects with periodic potential landscapes: Optical fractionation," Phys. Rev. E 70, 010901 (2004). [CrossRef]
  9. G. Milne, D. Rhodes, M. MacDonald, and K. Dholakia, "Fractionation of polydisperse colloid with acousto-optically generated potential energy landscapes," Opt. Lett. 32, 1144-1146 (2007). [CrossRef] [PubMed]
  10. L. Paterson, E. Papagiakoumou, G. Milne, V. Garcés-Chávez, S. A. Tatarkova, W. Sibbett, F. J. Gunn-Moore, P. E. Bryant, A. C. Riches, and K. Dholakia, "Light-induced cell separation in a tailored optical landscape," Appl. Phys. Lett. 87, 123901 (2005). [CrossRef]
  11. I. Ricardez-Vargas, P. Rodriguez-Montero, R. Ramos-Garcia, and K. Volke-Sepulveda, "Modulated optical sieve for sorting of polydisperse microparticles," Appl. Phys. Lett. 88, 121116 (2006). [CrossRef]
  12. T. ?ižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, "Optical sorting and detection of submicrometer objects in a motional standing wave," Phys. Rev. B 74, 035105 (2006). [CrossRef]
  13. K. Grujic, O. G. Helleso, J. P. Hole, and J. S. Wilkinson, "Sorting of polystyrene microspheres using a y-branched optical waveguide," Opt. Express 13, 1-7 (2005). [CrossRef] [PubMed]
  14. B. S. Schmidt, A. H. J. Yang, D. Erickson, and M. Lipson, "Optofluidic trapping and transport on solid core waveguides within a microfluidic device," Opt. Express 15, 14322-14334 (2007). [CrossRef] [PubMed]
  15. D. Ganic, X. S. Gan, and M. Gu, "Trapping force and optical lifting under focused evanescent wave illumination," Opt. Express 12, 5533-5538 (2004). [CrossRef] [PubMed]
  16. R. J. Oetama and J. Y. Walz, "Translation of colloidal particles next to a flat plate using evanescent waves," Colloids Surf. A 211, 179-195 (2002). [CrossRef]
  17. J. P. Barton and D. R. Alexander, "Fifth-order corrected electromagnetic field components for a fundamental gaussian beam," J. Appl. Phys. 66, 2800-2802 (1989). [CrossRef]
  18. I. Brevik, "Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum tensor," Phys. Rep. 52, 133-201 (1979). [CrossRef]
  19. J. P. Barton, D. R. Alexander, and S. A. Schaub, "Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam," J. Appl. Phys. 66, 4594-4602 (1989). [CrossRef]
  20. E. Almaas and I. Brevik, "Radiation forces on a micrometer-sized sphere in an evanescent field," J. Opt. Soc. Am. B 12, 2429-2438 (1995). [CrossRef]
  21. A. J. Goldman, R. G. Cox, and H. Brenner, "Slow viscous motion of a sphere parallel to a plane wall. I. Motion through a quiescent fluid," Chem. Eng. Sci. 22, 637-651 (1967). [CrossRef]
  22. A. H. J. Yang and D. Erickson, "Stability analysis of optofluidic transport on solid-core waveguiding structures," Nanotechnology 4, 045704 (2008). [CrossRef]
  23. G. P. Krishnan and D. T. Leighton, "Inertial lift on a moving sphere in contact with a plane wall in a shear-flow," Phys. Fluids 7, 2538-2545 (1995). [CrossRef]
  24. I. Brevik, T. A. Sivertsen, and E. Almaas, "Radiation forces on an absorbing micrometer-sized sphere in an evanescent field," J. Opt. Soc. Am. B 20, 1739-1749 (2003). [CrossRef]
  25. F. Charru, E. Larrieu, J. B. Dupont, and R. Zenit, "Motion of a particle near a rough wall in a viscous shear flow," J. Fluid Mech. 570, 431-453 (2007). [CrossRef]
  26. J. C. McDonald and G. M. Whitesides, "Poly(dimethylsiloxane) as a material for fabricating microfluidic devices," Acc. Chem. Res. 35, 491-499 (2002). [CrossRef] [PubMed]
  27. S. B. Kim, J. H. Kim, and S. S. Kim, "Theoretical development of in situ optical particle separator: Cross-type optical chromatography," Appl. Opt. 45, 6919-6924 (2006). [CrossRef] [PubMed]
  28. G. Milne, "Labview pattern-matching particle tracker software," (2007), http://faculty.washington.edu/gmilne/tracker.htm.
  29. M. Šiler, T. ?ižmár, M. Šerý, and P. Zemánek, "Optical forces generated by evanescent standing waves and their usage for sub-micron particle delivery," Appl. Phys. B 84, 157-165 (2006). [CrossRef]
  30. S. J. Hart and A. V. Terray, "Refractive-index-driven separation of colloidal polymer particles using optical chromatography," Appl. Phys. Lett. 83, 5316-5318 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (1493 KB)     
» Media 2: MOV (3372 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited