OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 6 — Mar. 17, 2008
  • pp: 3738–3743

Trimming of silicon ring resonator by electron beam induced compaction and strain

J. Schrauwen, D. Van Thourhout, and R. Baets  »View Author Affiliations

Optics Express, Vol. 16, Issue 6, pp. 3738-3743 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (748 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Silicon is becoming the preferable platform for future integrated components, mostly due to the mature and reliable fabrication capabilities of electronics industry. Nevertheless, even the most advanced fabrication technologies suffer from non-uniformity on wafer scale and on chip scale, causing variations in the critical dimensions of fabricated components. This is an important issue since photonic circuits, and especially cavities such as ring resonators, are extremely sensitive to these variations. In this paper we present a way to circumvent these problems by trimming using electron beam induced compaction of oxide in silicon on insulator. Volume compaction of the oxide cladding causes both changes in the refractive index and creates strain in the silicon lattice. We demonstrate a resonance wavelength red shift 4.91 nm in a silicon ring resonator.

© 2008 Optical Society of America

OCIS Codes
(220.3740) Optical design and fabrication : Lithography
(230.3120) Optical devices : Integrated optics devices

ToC Category:
Optical Devices

Original Manuscript: January 17, 2008
Revised Manuscript: February 5, 2008
Manuscript Accepted: March 3, 2008
Published: March 6, 2008

J. Schrauwen, D. Van Thourhout, and R. Baets, "Trimming of silicon ring resonator by electron beam induced compaction and strain," Opt. Express 16, 3738-3743 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005). [CrossRef]
  2. Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005). [CrossRef] [PubMed]
  3. P. Dumon, W. Bogaerts, D. Van Thourhout, D. Taillaert, R. Baets, J. Wouters, S. Beckx, and P. Jaenen, "Compact wavelength router based on a Silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array," Opt. Express 14, 664-669 (2006). [CrossRef] [PubMed]
  4. H. S. Rong, R. Jones, A. S. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005). [CrossRef] [PubMed]
  5. G. Roelkens, D. Van Thourhout, R. Baets, R. Notzel, and M. Smit, "Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a Silicon-on-Insulator waveguide circuit," Opt. Express 14, 8154-8159 (2006). [CrossRef] [PubMed]
  6. A. W. Fang, R. Jones, H. Park, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, "Integrated AlGaInAs-silicon evanescent racetrack laser and photodetector," Opt. Express 15, 2315-2322 (2007). [CrossRef] [PubMed]
  7. J. Van Campenhout, P. Rojo Romeo, P. Regreny, C. Saessal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J.-M. Fedeli, C. Lagahe, and R. Baets, "Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit," Opt. Express 15, 6744-6749 (2007). [CrossRef] [PubMed]
  8. P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, "Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photon. Technol. Lett. 16, 1328-1330 (2004). [CrossRef]
  9. Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003). [CrossRef] [PubMed]
  10. W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout, R. Baets, V. Wiaux, and S. Beckx, "Basic structures for photonic integrated circuits in silicon-on-insulator," Opt. Express 12, 1583-1591 (2004). [CrossRef] [PubMed]
  11. I. Kiyat, A. Aydinli, and N. Dagli, "Low-power thermooptical tuning of SOI resonator switch," IEEE Photon. Technol. Lett. 18, 364-366 (2006). [CrossRef]
  12. E. J. Klein, D. H. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, "Reconfigurable optical add-drop multiplexer using microring resonators," IEEE Photon. Technol. Lett. 17, 2358-2360 (2005). [CrossRef]
  13. Y. Nasu, M. Kohtoku, M. Abe, and Y. Hibino, "Birefringence suppression of UV-induced refractive index with grooves in silica-based planar lightwave circuits," Electron. Lett. 41, 1118-1119 (2005). [CrossRef]
  14. H. Haeiwa, T. Naganawa, and Y. Kokubun, "Wide range center wavelength trimming of vertically coupled microring resonator filter by direct UV irradiation to SiN ring core," IEEE Photon. Technol. Lett. 16, 135-137 (2004). [CrossRef]
  15. S. Ueno, T. Naganawa, and Y. Kokubun, "High UV sensitivity of SiON film and its application to center wavelength trimming of microring resonator filter," IEICE Trans. Electron. E 88c, 998-1004 (2005). [CrossRef]
  16. A. J. Houghton and P. D. Townsend, "Optical-waveguides formed by low-energy electron-irradiation of silica," Appl. Phys. Lett. 29, 565-566 (1976). [CrossRef]
  17. D. Barbier, M. Green, and S. J. Madden, "Wave-guide fabrication for integrated-optics by electron-beam irradiation of silica," J. Lightwave Technol. 9, 715-720 (1991). [CrossRef]
  18. S. Garcia-Blanco and J. S. Aitchison, "Direct electron beam writing of optical devices on Ge-doped flame hydrolysis deposited silica," IEEE J. Sel. Top. Quantum Electron. 11, 528-538 (2005). [CrossRef]
  19. M. Svalgaard, C. V. Poulsen, A. Bjarklev, and O. Poulsen, "Direct Uv writing of buried singlemode channel wave-guides in Ge-doped silica films," Electron. Lett. 30, 1401-1403 (1994). [CrossRef]
  20. D. A. Zauner, J. Hubner, K. J. Malone, and M. Kristensen, "UV trimming of arrayed-waveguide grating wavelength division demultiplexers," Electron. Lett. 34, 780-781 (1998). [CrossRef]
  21. H. N. J. Fernando, J. Canning, L. Wosinski, B. Jaskorzynska, and M. Dainese, "Characterization of ultra-violet-induced changes in planar waveguides," J. Opt. A Pure Appl. Opt. 5, 335-340 (2003). [CrossRef]
  22. W. Primak and R. Kampwirth, "The radiation compaction of vitreous silica," J. Appl. Phys. 39, 5651-5658 (1968). [CrossRef]
  23. W. Primak, "Mechanism for radiation compaction of vitreous silica," J. Appl. Phys. 43, 2745 (1972). [CrossRef]
  24. C. B. Norris and E. P. Eernisse, "Ionization dilatation effects in fused silica from 2 to 18-Kev electron-irradiation," J. Appl. Phys. 45, 3876-3882 (1974). [CrossRef]
  25. F. Piao, W. G. Oldham, and E. E. Haller, "The mechanism of radiation-induced compaction in vitreous silica," J. Non-Cryst. Solids 276, 61-71 (2000). [CrossRef]
  26. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, "Silicon-on-insulator microring resonator for sensitive and label-free biosensing," Opt. Express 15, 7610-7615 (2007). [CrossRef] [PubMed]
  27. D. Taillaert, W. Van Paepegem, J. Vlekken, and R. Baets, "A thin foil optical strain gage based on silicon-on-insulator microresonators," Third European Workshop on Optical Fibre Sensors (EWOFS 2007) 6619, 661914 (2007).
  28. T. A. Dellin, D. A. Tichenor, and E. H. Barsis, "Surface Compaction in Irradiated Vitreous Silica," Bulletin of the American Physical Society 21, 296-296 (1976).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2 Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited